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We show that a scalar field conformally coupled to AdS gravity in four dimensions with a quartic self-
interaction can be embedded into M theory. The holographic effective potential is exactly calculated,
allowing us to study nonperturbatively the stability of AdS, in the presence of the conformally coupled
scalar. It is shown that there exists a one-parameter family of conformal scalar boundary conditions for
which the boundary theory has an unstable vacuum. In this case, the bulk theory has instanton solutions
that mediate the decay of the AdS, space. These results match nicely with the vacuum structure and the
existence of instantons in an effective three-dimensional boundary model.
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Introduction.—Quantum mechanical tunneling is an im-
portant mechanism for vacuum selection in the huge land-
scape of string theory vacua. It is also expected that it plays
a role in the early Universe, and in fact it can become
dominant in an eternally inflating universe. In both cases
tunneling needs to be understood in the presence of a
quantum gravity theory. This is a difficult problem.
However, if holography is at work one may hope to map
this into a problem of vacuum decay in a theory without
gravity which might be more accessible. In any case, it is
certainly of interest to study holography in the presence of
unstable vacua.

As a step in this direction we study here a simple model
that arises as a consistent truncation of M theory to four
dimensions. The model consists of a scalar field confor-
mally coupled to gravity with a quartic self-interaction. We
calculate the exact holographic effective potential of the
dual boundary theory on the sphere and we show that there
exists a one-parameter family of boundary conditions for
the scalar field such that, in a certain range of this parame-
ter, the boundary theory has an unstable vacuum. In the
same parameter range we find instanton solutions whose
Lorentzian signature form describes a bubble of true vac-
uum expanding at the speed of light [1]. However, to
understand the end point of the decay it is necessary to
go beyond the supergravity approximation and consider
finite-N corrections. Finally, we argue that an O(N’) ¢°
three-dimensional theory qualitatively reproduces the bulk
results.

Conformally coupled scalars and their embedding in
string/M theory.—The action of a scalar field conformally
coupled to Einstein gravity with a negative cosmological
constant in four dimensions is

S—fd“xf[ R+2A+(a b))+ — R¢2+)\¢4}
(1)
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where k? = 87G,, A is a dimensionless coupling, and the
cosmological constant is A = —3//?. An important prop-
erty of (1) is that all its extrema have constant Ricci scalar
R=—12/[2].

It was pointed out in [3] that, for the special value A =
k2/61%, (1) can be obtained via the field redefinition

k$/\6 = tanh(kd/V6), g, = cosh®(kp/V6)g,,,

2)
from an action with a minimally coupled scalar field and
the potential V($) = —(3/«212) cosh(v/2k ¢ /~/3). The re-
sulting action is a consistent truncation of the N =8
gauged supergravity action to the diagonal of the Cartan
subgroup U(1)* of the SO(8) gauge group [4]. It follows
that any solution of (1) with A = «?/6/* can be uplifted to
a solution of 11-dimensional supergravity. The explicit

uplift for this particular one-scalar truncation takes the
form [5]:

ds}, = 4(X + X~ ) 2A%3ds] + APATVH{X[(cos?0
+ X 4sin®0)d6* + sin*0d¢p3] + X 'cos?0d 02},
(3

Fy=—-16""(X+x")*
X [2X%cos26 + X 2(1 + 2sin®0)]e,
+ 161sin20(X + X ) 72X "' %, dX AdB, (4)

Where we have defined A = Xcos26 + X 3sin6 and X =
+ kp/6)2/(1 — kd/\/6)'/2. Note that the metric (3)
preserves an $° and contains a squashed $?, which be-
comes totally squashed as ¢ — +/6/k, or X — oo. This
signals a breakdown of the supergravity description in this
limit.
Boundary conditions and the holographic effective ac-
tion.—A scalar field in (Euclidean) AdS, with radius / and
in the upper half plane coordinates has the asymptotic

© 2007 The American Physical Society


http://dx.doi.org/10.1103/PhysRevLett.98.231601

PRL 98, 231601 (2007)

PHYSICAL REVIEW LETTERS

week ending
8 JUNE 2007

behavior

¢~ (o@D + -1+ 24D+ O

as z approaches the conformal boundary at z = 0. The
parameters A., where A, = A _, are related to the mass
of the scalar by m?/> = A(A — 3) and ¢ (Z) are arbitrary
functions of the transverse coordinates. It is known that
such a scalar can be consistently quantized in AdS, either
with Dirichlet, ¢ _(Z) = 0, or with Neumann, 6¢ , (Z) =
0, boundary conditions if the mass squared is in the range
—9/4 < m*I> < —5/4 [6]. This is the case for the scalar ¢
in (1) since the scalar curvature R is constant and acts as a
mass term with m?/> = —2. Quantizing ¢ with Neumann
boundary conditions one concludes that the dual boundary
theory has an operator with dimension A_ = 1 [7]. This is
consistent with the M theory embedding discussed above,
where the scalar ¢ in (2), and more generally all the scalars
of the SL(8, R)/SO(8) submanifold of the scalar manifold
of N = 8 gauged supergravity, is dual to a dimension one
operator whose vacuum expectation value (VEV) parame-
trizes a certain direction of the Coulomb branch of the
N = 8 super conformal field theory (SCFT) on the world
volume of coincident M2 branes.

In AdS/CFT the (generically nonlocal) relationship be-
tween the functions ¢_ and ¢ in the asymptotic expan-
sion (5), which is imposed by the requirement of regularity
of the exact solution, determines the effective action of the
boundary theory. In particular, the effective action of the
dual boundary theory is given by the on-shell value of the
renormalized bulk action S[¢ _], taken as a functional of
¢_, by the relation I'yy[—¢_]= S[¢p_]. This follows
from the fact that S[ ¢ _] is minus the generating functional
for connected correlation functions of the boundary opera-
tor with dimension A, and its Legendre transform gives
the corresponding generating functional for the boundary
operator with dimension A_. It follows that the relation-
ship 6T elp_1/8¢p_ = —8S[p_1/6h_ = 0 determines
the vacuum structure of the dual boundary theory.

Starting with solutions satisfying Neumann boundary
conditions with vanishing source J(Z) for the dual operator,
i.e., ¢ (Z) = J(Z) = 0, one can modify the boundary con-
ditions while preserving the (bosonic) asymptotic symme-
try group of AdS,. There is a one-parameter family of such
deformations

¢+ (2) = —lag(2). (6)

These mixed boundary conditions interpolate between
Neumann (@ = 0) and Dirichlet (¢ = 00). For generic «,
the new boundary condition will not be a stationary point
of (1) but it can be enforced by adding a boundary term to
the action which we will determine. Eventually we will be
considering solutions with vanishing stress-energy tensor
and for that we renormalize to zero the on-shell contribu-
tion of the gravity part of the action. The matter part of the
action includes also a generalized Gibbons-Hawking term

(see [2] for details). The boundary term that enforces (6) is

B
Sy = = [ 2620 0

In the context of the AdS/CFT correspondence the addi-
tion of the boundary term (7) corresponds to a marginal
triple-trace deformation of the dual conformal field theory
(CFT) [8], completely breaking supersymmetry. The
boundary condition (6) has been studied in the context of
“designer gravity”’ [9], where various black hole solutions
[8] as well as gravitational solitons and cosmological big
bang or crunch geometries [10] satisfying these boundary
conditions were numerically constructed. An exact
Poincaré domain wall solution satisfying the boundary
condition (6) was found and uplifted to 11 dimensions in
[5].

The equations of motion following from (1) determine in
principle the nonlocal relation between the two modes,
¢+(Z), and hence the holographic effective action for the
VEV of the dual dimension one operator in the CFT
deformed by the marginal deformation (7). This effective
action can be computed in a derivative expansion away
from the vanishing VEV point. On a nearly flat boundary
one finds that up to two derivatives [2]

Ues[#-1 =$ ]d3x g(o)[¢:1ai¢_af¢_
+ %R[g(o)hﬁ_ +2JAVA — a)p? } (8)

where g(g);; is the boundary metric. Moreover, the exact
holographic effective potential for R = 0 is [2]

e [ ROl

6 6
®
where the additive constant has been fixed by requiring that
the trivial vacuum at ¢_ = 0 has zero energy. Redefining

¢_ = ¢? and taking a — /A the two-derivative holo-
graphic effective action (8) takes the form

4 1 . 1
Tlo]=—= | &8 —9,00'¢0 + —R 2
ettl¢] 3\/Xf X 8(0)<2 ipde + e [s0)]le

1
+ gwé) + O(u?), (10)

where u = A — a?. This agrees with the classically con-
formally invariant toy-model actions used in [10,11].
Since the system (1) can be embedded into 11-
dimensional supergravity, the holographically dual field
theory is (a sector of) the N = 8 interacting SCFT in
the large-N limit [12]. In the Abelian case, N = 1, this
theory can be obtained by compactifying N = 4 super
Yang-Mills in four dimensions on a circle in the limit of
zero radius, and it is also believed to be the infrared fixed
point of N = 8 super Yang-Mills in three dimensions.
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However, little is known about this theory, which makes
any test of the AdS/CFT correspondence very difficult.
Nevertheless, we will argue below that the bulk results (8)—
(10) can be qualitatively reproduced by a certain three-
dimensional O(N’) model, where N’ is not related to the
number of M2 branes. This not only implies some connec-
tion between the N = 8 SCFT and the O(N’) model, as a
consequence of the AdS/CFT correspondence, but it is
also a step towards finding the holographic dual of O(N')
models in three dimensions [13].

Scalar instantons: —The equations of motion following
from the action (1) admit nontrivial solutions with vanish-
ing stress tensor. The condition that the stress tensor van-
ishes reduces to a linear equation for the scalar field,
namely (V,V, —1g,,0,)¢ ' =0 [2], which admits
nontrivial solutions provided the metric is that of exact
AdS,. In the upper half plane coordinates the most general
solution of the equations of motion with vanishing bulk
stress tensor takes the form

bz ) an

2
um(—sgnuw TGt alt G- g)

where a, b, zj, i =1, 2, 3, are arbitrary constants. For
A >0, this Euclidean solution is nonsingular provided

a>b=0. (12)

d):

For A <0 this solution was studied in [11] ignoring its
backreaction on the geometry. We have now shown that in
fact there is no backreaction and (11) together with the
AdS, metric is an exact solution of the coupled equations
of motion. Expanding the solution (11) asymptotically near
the conformal boundary we get precisely the expansion (5),

where ¢ satisfy (6) with @ = /|Ala/b and
-l ” )
IJIAT\—sgn(A)b? + a* + (2 — Z)*)

Notice that the parameter « is not a modulus of the solution
but rather labels different boundary conditions. Therefore,
it corresponds to the deformation parameter of the dual
theory and different values of a correspond to saddle
points of different theories. The remaining parameters in
(11) do correspond to moduli of the solution and they
parametrize a four-dimensional hyperbolic space I]:ﬂ4 of
radius / = +/a*> — A, which is also the moduli space of
instantons in R3. This can be seen by parametrizing the
solution (11) in a manifestly O(5, 1) covariant form as in
[14], ¢~ ' = hyyM, where h, y are vectors in a Six-
dimensional embedding space. It can then be shown [2]
that the solution is determined by the five-dimensional part
of h, which satisfies h? = — %[a2 — b?sgn(A)] and hence,
given (12), it parametrizes an I]:|]4 also for A > 0. Note that
the condition (12) for the solution to be nonsingular is the
necessary and sufficient condition for the radius of the
moduli space to be well defined and also for the potential

b_

13)

(9) to be unbounded from below. Remarkably, the VEV
(13) is an exact extremum of the two-derivative holo-
graphic effective action (10).

Vacuum decay.—The unboundedness of the boundary
effective potential for & > k/+/6l is the holographic image
of an AdS, instability towards its spontaneous “‘dressing”
by a nonzero scalar field when the boundary condition (6)
is imposed with @ > «/+/6l. This nonperturbative insta-
bility does not contradict any positivity theorem. Although
the positivity theorems [6,15—-17] do apply when the super-
symmetric (a = k/ V6l [2]) boundary conditions are im-
posed on the scalar field, they do not apply for a generic
value of the deformation parameter « in (7). The question
of stability of AdS with such boundary conditions has been
addressed in the context of ‘“‘designer gravity” [9,18],
where it has been suggested that AdS with boundary con-
ditions on the scalar defined by the boundary term S~y =
-/ d*z W(¢_) is stable provided the function W(¢_)
has a global minimum. This is clearly not the case for the
deformation (7) and so these positivity theorems do not
apply either.

The physical meaning of the instanton solutions (11)
becomes clear by taking the boundary to be S°. In this case
the potential (9) has a global minimum at ¢_ = 0 for a =
VA (note that ¢ = 0) which turns into a local minimum
for @ > +/A separated by a potential barrier from the
instability region at ¢_ — oo (Fig. 1). The scalar field
can tunnel from the local minimum at ¢_ =0 to the
instability region. In terms of the bulk scalar field the
instability region is reached for ¢ — v/6/k or ¢ — +oo.
We have seen that this is precisely the limit where an S? in
the uplifted 11-dimensional metric (3) gets totally
squashed giving rise to a singularity. To understand the
true vacuum of the theory for @ > «/ 61, if there is one,
one needs to go beyond supergravity to include finite-N
corrections. This would modify the holographic potential
(9) and at the same time would resolve the geometric
singularity from the squashed S2.

Vl,a

FIG. 1. Plot of the potential (9) on §° for a < k/ NG| (long
dashes), @ = k/~/61 (short dashes), and a > k/~/61.
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The physical picture of the decay process can be under-
stood in terms of bubble nucleation as proposed by
Coleman and De Luccia [1]. Namely, the Lorentzian
version of the instanton solution (11) describes a ‘“‘half
bubble” centered on the boundary which is expanding or
collapsing at the speed of light towards the bulk. The
equatorial plane of the bubble describes an expanding or
collapsing bubble in the dual field theory. Outside and far
away from the bubble the space is AdS, corresponding to
the local minimum at ¢_ = 0 of the potential (9). Inside
the bubble is the “true vacuum” which cannot be under-
stood in the supergravity approximation. The tunneling
probability is proportional to the exponential of the on-
shell action computed with the boundary conditions de-
fined by (7) and evaluated on the instanton solution (11),
P o exp(—TIeslinst). Evaluating this gives [2]

272
1_‘efflinst = 47721 < ! - 1) (14)
K= \{J1 — kK*/61”a®

Note that the deformation parameter « drives the theory
from the regime of marginal stability at & = k/+/6/ to total
instability at & — oo. In the global coordinates of H, where
the boundary is S°, the instanton solution (11) depends
only on the H, radius. In particular, ¢ _ is constant in these
coordinates. This positive constant solution corresponds
precisely to the local maximum of the holographic poten-
tial (9) on S3, which again only exists for a > k/ \/51.
Evaluating the potential at this maximum and multiplying
with the volume of S* we get exactly (14). This confirms
that the tunneling probability is indeed proportional to the
exponential of minus the height of the potential barrier and
justifies our claim that the instantons mediate the tunneling
of the local minimum at ¢_ = 0 to the instability region
for @ > k/~/6l.

An effective boundary theory.—There is some indication
that the holographic results (9) and (10) could be repro-
duced from an O(N’) model in three dimensions with a
g($2)3/ 6 interaction. Both the form (10) of the holo-
graphic effective action in the double scaling limit and
the existence of instantons in certain O(N') models in three
dimensions are suggestive of such a connection.

To illustrate this point we consider the action

(¢“¢“>3} (15)

1 ) g
J— 3> ani pa
I8 —C[d X[zal¢ d ¢ + 6N/2

where a = 1,2,..., N’ and C is an N’-independent con-
stant. For g < 0 this model has instanton configurations
given by
$°(5) = [BN?/ (=) V(e VBB + G = )2
(16)

where ¢?c? = b? and b is an arbitrary constant. On S° the
classical potential for the O(N')-singlet operator o =

¢*¢*/N' becomes V,(o) = C(Ro/16 + go?/6). With
the identifications C = 4/3vA, g =3vVAA — a)/2,
and o = ¢ _, this potential coincides with the holographic
potential (9) in the limit of small curvature. In particular,
the instability region of (9) for & > +/A is mapped pre-
cisely to the instability region of the O(N') model for g <
0. It would be very interesting if a full quantum treatment
of this O(N’) model reproduced the full holographic po-
tential (9) in the large-N’ limit [19]. Evaluating the action

(15) on the instanton solution (16) we obtain N’ *1155;51 =

(V272 /3A) (/A — 1)71/2, which precisely agrees with
the tunneling probability (14) in the approximation
a/A = 1.
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