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It has recently been shown that a Hagedorn phase of string gas cosmology can provide a causal
mechanism for generating a nearly scale-invariant spectrum of scalar metric fluctuations, without the need
for an intervening period of de Sitter expansion. In this Letter, we compute the spectrum of tensor metric
fluctuations (gravitational waves) in this scenario and show that it is also nearly scale invariant. However,
whereas the spectrum of scalar modes has a small red tilt, the spectrum of tensor modes has a small blue
tilt, unlike what occurs in slow-roll inflation. This provides a possible observational way to distinguish
between our cosmological scenario and conventional slow-roll inflation.
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Introduction.—String gas cosmology (SGC) [1,2] (see
also [3] for early work and [4–6] for recent overviews) is
an early approach to string cosmology, based on adding
minimal but crucial inputs from string theory, namely,
new degrees of freedom—string oscillatory and winding
modes—and new symmetries—T duality—to the hy-
pothesis of a hot and small early Universe. A key aspect
of SGC is that the temperature cannot exceed a limiting
temperature, the Hagedorn temperature TH [7]. This pro-
vides a qualitative reason to expect that string theory can
resolve cosmological singularities [1]. If we evolve the
radiation-dominated Friedmann-Robertson-Walker (FRW)
phase of standard cosmology into the past, a smooth tran-
sition to a quasistatic Hagedorn phase will occur. Revers-
ing the time direction in this argument, the following new
cosmological scenario [1] emerges: The Universe starts in
a quasistatic Hagedorn phase, during which thermal equi-
librium can be established over a large scale (large enough
for our current Universe to grow out of it following the
usual noninflationary cosmological dynamics). The quasi-
static phase makes a smooth transition to a radiation-
dominated FRW phase, after which point the Universe
evolves as in standard cosmology.

Recently [8], it was discovered that string thermody-
namic fluctuations during the Hagedorn phase lead to
scalar metric fluctuations which are adiabatic and nearly
scale invariant at late times, provided that the perturbations
can be described by Einstein gravity, thus providing a
simple alternative to slow-roll inflation for establishing
such perturbations. Note that this mechanism for the gen-
eration of the primordial perturbations is intrinsically
stringy—particle thermodynamic fluctuations would lead
to a spectrum with a large and phenomenologically unac-
ceptable blue tilt.

We briefly recall the key features of the new structure
formation scenario. At early times t (t < tR), the Universe
is in the quasistatic Hagedorn phase. The physical wave-
length of any perturbation mode (characterized by having
constant momentum k in comoving coordinates) is ap-

proximately constant. The key point is that the Hubble
radius (which sets the limit on which causal processes
can locally set up fluctuations—see, e.g., [9,10] for over-
views of the theory of cosmological perturbations) is es-
sentially infinite, thus allowing a causal mechanism for the
generation of primordial fluctuations. Near t � tR, a
smooth transition from the Hagedorn phase to the
radiation-dominated phase of standard cosmology occurs.
The Hubble radius decreases rapidly to take on a minimal
value, which is microscopic (set by the temperature at t �
tR, which will be close to TH). Thus, fluctuation modes of
relevance to current cosmological observations exit the
Hubble radius at times ti�k� close to tR. During the
radiation-dominated FRW phase, the Hubble radius in-
creases linearly in t, while the physical wavelength of a
perturbation mode grows only as t1=2. Thus, at late times
tf�k�, the modes reenter the Hubble radius. Since the
primordial perturbations in our scenario are of thermal
origin (and there are no nonvanishing chemical potentials),
they will be adiabatic, and, since they propagate on super-
Hubble scales for a long time during the FRW phase, they
will be squeezed and will lead to the same type of acoustic
oscillations in the angular power spectrum of the cosmic
microwave background anisotropies as what is produced in
slow-roll inflation models.

In this Letter, we generalize our previous analysis [8] to
allow us to compute, in addition to the scalar metric
fluctuations (the metric perturbation modes which couple
to matter), the tensor modes (gravitational waves). We find
that the resulting spectrum of tensor modes is also nearly
scale invariant but that it has a slightly blue tilt, unlike what
happens in slow-roll inflation, where the tilt for the gravi-
tational wave spectrum is also red. The scalar to tensor
ratio is calculable from the detailed dynamics of the system
(we postpone this calculation to a follow-up paper). It is set
by how close the temperature is to the Hagedorn tempera-
ture when the scales which are measured today exit the
Hubble radius at the end of the quasistatic Hagedorn phase.
The predicted blue tilt of the spectrum of gravitational
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waves would allow us, in principle, to distinguish our
scenario from the usual slow-roll inflationary models.

We begin this Letter with a recap of the method of
Refs. [8,11] to compute mass fluctuations in the
Hagedorn phase of SGC and generalize the method to yield
fluctuations of arbitrary components of the energy-
momentum tensor of the string gas. Then we relate the
spectrum of gravitational waves in late time cosmology to
the fluctuations of the energy-momentum tensor in the
Hagedorn phase and show that the resulting power spec-
trum is nearly scale invariant.

In the following, we assume that our three spatial di-
mensions are already large during the Hagedorn phase (for
a possible mechanism to achieve this, see [12]), while the
extra spatial dimensions are confined to the string scale.
For a mechanism to achieve this in the context of SGC, see
[1] (see, however, [13,14] for caveats), and, for a natural
dynamical mechanism arising from SGC to stabilize all of
the moduli associated with the extra spatial dimensions,
see [15–20]. To be specific, we take our three dimensions
to be toroidal. The existence of one cycle results in the
stability of string winding modes—and this is a key in-
gredient in our calculations.

Energy-momentum tensor correlation functions for
closed strings.—The mean energy-momentum tensor
hT�� i is given in terms of the thermal canonical partition
function Z by

 hT�� i � 2
G����������
�G
p

@ lnZ
@G�� �D�

� lnZ; (1)

where G�� is the Euclidean metric of space-time [the time
coordinate is compactified to a circle of radius � (the
inverse temperature)].

Our aim is to calculate the fluctuations of T�� on various
length scales R. For each R, we take our spatial coordinates
to run over a fixed interval, e.g., �0; 2��. Thus, the metric is
given by

 G�� � diag��2; R2; R2; R2�: (2)

Letting another derivative operator D act on lnZ gives two
terms: one for which both derivative operators act on Z and
a second which will contain the product of terms where one
D acts on Z. Symmetrizing over the indices, we find the
mean square fluctuations to be
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with �T�� � T�� � hT
�
� i.

The partition function Z � exp���F� is given by the string free energy F. Thus, the string thermodynamical fluctuation
in the energy density, denoted by the correlation function C00

00, becomes
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where CV � �@hEi=@T�, with E � F� ��@F=@�� and V � R3 is the volume of three compact but large spatial
dimensions. The fluctuation in spatial diagonal parts of the energy-momentum tensor is
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with no summation on i. The pressure p is

 p � �V�1�@F=@ lnR� � T�@S=@V�E: (6)

We now compute the correlation functions (4) and (5)
using tools from string statistical mechanics. We follow the
discussion in Ref. [21]. The starting point is the formula
S�E;R� � ln��E;R� for the entropy in terms of ��E;R�,
the density of states. The density of states of a gas of closed
strings on a large three-dimensional torus (with the radii of
all internal dimensions at the string scale) is given by (see
[21])

 ��E;R� ’ �He
�HE�nHV�1� ���1��E;R��; (7)

where ���1� comes from the contribution to the density of
states [when writing the density of states as a Laplace
transform of Z���, which involves integration over �]

from the closest singularity point �1 to �H � �1=TH� in
the complex � plane. Note that �1 <�H, and �1 is real.
From Ref. [21], we have

 ���1��E;R� � �
��HE�5

5!
e���H��1��E�	HV�: (8)

In the above, nH is a (constant) number density of order
‘�3
s (‘s is the string length), 	H is the ‘‘Hagedorn energy

density‘‘ of order ‘�4
s , and

 �H � �1 	

�
�‘3
s=R2� for R
 ‘s;
�R2=‘s� for R� ‘s:

(9)

To ensure the validity of Eq. (7), we require ���1� � 1 by
assuming 	 � �E=V� 
 	H.

Combining the above, the entropy of the string gas in the
Hagedorn phase becomes
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 S�E;R� ’ �HE� nHV � ln�1� ���1��; (10)

and therefore the temperature T�E;R� � ��@S=@E�V�
�1

will be

 T ’
�
�H �

@���1�=@E

1� ���1�

�
�1
’ TH

�
1�

�H � �1

�H
���1�

�
:

(11)

Using this relation, we can express ���1� in terms of T and
R via

 ‘3
s���1� ’ �

R2

TH

�
1�

T
TH

�
: (12)

In addition, we find

 hEi ’ ‘�3
s R2 ln

�
‘3
sT

R2�1� T=TH�

�
: (13)

Note that, to ensure ���1� � 1 and hEi 
 	HR3, we
require �1� T=TH� � �‘2

s=R
2�.

The results (10) and (12) determine the correlation
functions (4) and (5). To compute (4), note that

 CV � �
�
T2

�
@2S�E;R�

@E2

�
V

�
�1
�

R2=‘3

T�1� T=TH�
; (14)

which leads to

 C00
00 � h�	

2i ’
T

‘3
s�1� T=TH�

1

R4 : (15)

Note that the factor �1� T=TH� in the denominator is
responsible for giving the spectrum a slight red tilt. It
comes from the differentiation with respect to T.

Evaluating (6),

 p�E;R� � nHTH �
2

3

�1� T=TH�

‘3
sR

ln
�

‘3
sT

R2�1� T=TH�

�

(16)

immediately yields

 Ciiii ’
T�1� T=TH�

‘3
sR

4 ln2

�
R2

‘2
s
�1� T=TH�

�
: (17)

Note that, since no temperature derivative is taken, the
factor �1� T=TH� remains in the numerator. This will
lead to the slight blue tilt of the spectrum of gravitational
waves.

Tensor modes from Hagedorn fluctuations.—We now
estimate the dimensionless power spectrum of gravita-
tional waves.

In slow-roll inflation, to leading order in perturbation
theory, matter fluctuations do not couple to tensor modes.
This is due to the fact that the matter background field is
slowly evolving in time and the leading order gravitational
fluctuations are linear in the matter fluctuations. In our
case, the background is not evolving (at least at the level
of our computations), and hence the dominant metric

fluctuations are quadratic in the matter field fluctuations.
At this level, matter fluctuations induce both scalar and
tensor metric fluctuations. Thus, we expect that, in our
string gas cosmology scenario, the ratio of tensor to scalar
metric fluctuations will be larger than in simple slow-roll
inflationary models.

We will extract the amplitude of the gravitational wave
spectrum from the spatial fluctuations Ciijj of the energy-
momentum tensor. Strictly speaking, it is the off-diagonal
components which will couple uniquely to the tensor
modes. We will estimate their order of magnitude by the
order of magnitude of the diagonal terms computed in the
previous section. This gives a good approximation, as can
be checked by letting the metric in (2) depend on three
separate scales Ri (where the index i runs from 1 to 3) and
by extracting the off-diagonal correlation functions follow-
ing the method of the previous section but taking mixed
spatial derivatives.

Tensor perturbations in a spatially flat FRW universe
take the form

 ds2 � �dt2 � a2�t���ij � hij�dxidxj: (18)

Since to linear order in hij the Einstein tensor for fluctua-
tions on a scale k is proportional to k2hij�k�, it follows from
the space-space Einstein equations that

 k2hij�k� 	 �8�G��Tij�k�: (19)

The power spectrum of the right-hand side of the above
equation is given by the correlation function Ciijj. Thus, the
dimensionless gravitational wave power spectrum is given
by this correlation function. Therefore, from (19) one can
calculate the dimensionless power spectrum for h
k , where
h
k is the amplitude of either of the two gravitational wave
polarization modes. Dropping the superscript 
 (due to
symmetry, both polarization modes will be equally ex-
cited), we obtain

 k3jh�k�j2 	 k�4�8�G�2Ciijj: (20)

Inserting the result (5) for the correlation function yields

 k3jh�k�j2 	
64�2G2T

‘3
s

�1� T=TH�ln2

�
1

‘2
sk

2 �1� T=TH�
�
;

(21)

which, for temperatures close to the Hagedorn value, re-
duces to

 k3jh�k�j2 	
�
‘Pl

‘s

�
4
�1� T=TH�ln

2

�
1

‘2
sk2 �1� T=TH�

�
:

(22)

This shows that the spectrum of tensor modes is—to a first
approximation—scale invariant.

Discussion.—Our result (22) for the power spectrum of
gravitational waves should be compared to the result for
the power spectrum of scalar metric fluctuations computed
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in Ref. [8]:

 P ��k� 	
�‘pl

‘s

�
4 1

1� T=TH
: (23)

Note that, for a fixed scale k, both (22) and (23) must be
evaluated at the time ti�k� when the mode k exits the
Hubble radius at the end of the Hagedorn phase. Since
ti�k� increases slightly as k increases, the temperature
T�ti�k�� will be slowly decreasing. Hence, the expression
in front of the logarithm in our final expression (22) for the
power spectrum of tensor fluctuations yields a slight blue
tilt. Values of k for which the perturbative analysis of string
gas cosmology is consistent are on the high k side of the
zero of the logarithm in (22)—this follows from the con-
dition j���1�j � 1 and (12). Hence, the logarithmic factor
in (22) adds to the blue tilt of the spectrum.

A heuristic way of understanding the origin of the slight
blue tilt in the spectrum of tensor modes is as follows. The
closer we get to the Hagedorn temperature, the more the
thermal bath is dominated by long string states, and thus
the smaller the pressure will be compared to the pressure of
a pure radiation bath. Since the pressure terms (strictly
speaking, the anisotropic pressure terms) in the energy-
momentum tensor are responsible for the tensor modes, we
conclude that the smaller the value of the wave number k
[and thus the higher the temperature T�ti�k��] when the
mode exits the Hubble radius, the lower the amplitude of
the tensor modes. In contrast, the scalar modes are deter-
mined by the energy density, which increases at T�ti�k�� as
k decreases, leading to a slight red tilt.

Comparing (22) and (23), we see that the tensor to scalar
ratio r evaluated on a scale k is given by

 r	 f1� T�ti�k��=THg2ln2

�
1

‘2
sk

2 f1� T�ti�k��=THg
�
:

(24)

In principle (if the dynamical evolution from the Hagedorn
phase to the radiation-dominated FRW phase were under
complete analytical control), this quantity is calculable. If
the string length were known, the factor �1� T=TH� could
be determined from the normalization of the power spec-
trum of scalar metric fluctuations. Since the string length is
expected to be a couple of orders larger than the Planck
length, the above factor does not need to be very small.
Thus, a ratio r larger than in simple roll inflationary models
may emerge.

Based on the results of this Letter, it thus appears
promising that our scenario will give rise to testable
predictions.
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