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Recent calculations of the recoil velocity in binary black-hole mergers have found the kick velocity to
be of the order of a few hundred km=s in the case of nonspinning binaries and about 500 km=s in the case
of spinning configurations, and have lead to predictions of a maximum kick of up to 1300 km=s. We test
these predictions and demonstrate that kick velocities of at least 2500 km=s are possible for equal-mass
binaries with antialigned spins in the orbital plane. Kicks of that magnitude are likely to have significant
repercussions for models of black-hole formation, the population of intergalactic black holes, and the
structure of host galaxies.
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Introduction.—A well-known phenomenon of general
relativity is the recoil or rocket effect due to the emission
of anisotropic gravitational radiation [1–3]. The loss of
linear momentum radiated away in the form of gravita-
tional waves imparts a recoil or kick on the remaining
system which then moves relative to its original center-
of-mass frame. This effect is particularly pronounced for
the inspiral and merger of two compact objects and thus
may have dramatic consequences for the merger of mas-
sive black holes residing at the centers of galaxies when
their hosts undergo merger.

Massive black holes with masses 105 to 109:5M� are not
only known to exist at the center of many galaxies, but also
to have a substantial impact on the structure and formation
of their host galaxies, as is demonstrated by the correlation
of the black-hole mass with the bulge mass, luminosity,
and velocity dispersion [4–7]. The merger of galaxies is
thus likely to be accompanied by an inspiral of the central
black holes. In order to assess the impact of the resulting
black-hole recoil on questions such as the bulge structure,
the formation history of massive black holes, and inter-
stellar and intergalactic populations of black holes, it is
vital to have a good understanding of the kick magnitude
and, in particular, the maximum possible kick velocities.

The first study of the recoil effect for inspiraling binaries
was performed by Fitchett [8] in the framework of non-
spinning point particles subject to Newtonian gravity. The
resulting recoil calculated using the lowest order multi-
poles is given in his Eq. (3.21) and predicts kick velocities
of the order of 1000 km=s that exceed the escape velocities
from massive galaxies [9]. The problem was reinvestigated
using the particle approximation [10–13], post-Newtonian
methods [14–17], the Close-Limit Approximation [18–
20], as well as numerical simulations [21,22]. The picture
that emerged from these studies is that the recoil from
unequal-mass, nonspinning binaries is unlikely to exceed
a few hundred km=s.

Recent breakthroughs in the numerical simulation of
black-hole binaries [23–25] have enabled investigations

of the recoil problem without any restrictive approxima-
tions other than the numerical differencing of the Einstein
equations. First studies addressed the recoil from nonspin-
ning binaries and confirmed the relatively small magnitude
of the kick velocities for mass ratios in the range 1:1 to 1:2
[26,27]. In a previous publication [28], we have presented
the most comprehensive study of this problem and found a
maximum kick of 175:7� 11 km=s for a mass ratio � �
m1m2=�m1 �m2�

2 � 0:195� 0:005.
More recent numerical studies have shown, however,

that as expected, significantly larger kicks are realized if
one allows at least one black hole to spin. Simulations of
equal-mass binaries with spins orthogonal to the orbital
plane predict kick velocities of 475 and 440 km=s, respec-
tively, in the limit of extreme Kerr black holes [29,30].
Kicks of tens of km=s have been obtained from head-on
collisions of spinning black holes [31]. These results are
consistent with the effective-one-body post-Newtonian
(PN) study in [32]. In addition, Campanelli et al. [33]
obtain vkick � 454 km=s in the case of a nonspinning
black hole orbiting a spinning counterpart of twice the
mass with the spin oriented at �45� relative to the orbital
plane. They further estimate that an equal-mass binary with
spins aligned in the orbital plane could produce a maxi-
mum kick of around 1300 km=s based on a PN calculation
by Kidder [15].

In this Letter we investigate the scenario suggested by
Campanelli et al. [15,33] and find that a kick of 2500 km=s
is possible—larger than the escape velocity of about
2000 km=s of giant elliptical galaxies.

Numerical framework.—The numerical simulations pre-
sented in this work were performed independently with the
BAM and the LEAN codes. These codes employ the moving-
puncture method [23,24] and are described in detail in
[34,35]. We note, however, the following modifications
of the CACTUS [36] and CARPET [37] based LEAN code
relative to the version presented in [34]: time evolution
of the TWOPUNCTURE initial data [38] is performed using
the fourth-order accurate Runge-Kutta method, the vari-
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able � has been replaced by the new variable � � e��,
and the code uses fifth-order prolongation in space. The
two codes represent independent implementations of simi-
lar techniques, thereby allowing important cross valida-
tion.

The gravitational waves emitted by the binary are ex-
tracted by computing the Newman-Penrose scalar �4 over
spheres of constant radius at different distances. The nota-
tion and equations used for this procedure are explained in
detail in section III.A of [35]. In order to estimate the recoil
velocity of the system, we compute the total linear mo-
mentum radiated during the simulation directly from �4

using Eq. (1) in [28]. The pulse of spurious radiation from
the initial data, which would lead to an overestimation of
the final kick by about 5%, is not included in this calcu-
lation. We have neglected any recoil that may have accu-
mulated during the earlier inspiral of the black holes;
however, for the final kick values we obtain, this introduces
an uncertainty of less than 1% in our results (as obtained
from PN estimates in the nonspinning case [16] ), which is
far less than the uncertainty due to other errors.

We consider configurations with spins of equal size but
opposite direction lying in the orbital plane. The initial
parameters of Model I (MI) were chosen without particular
regard to obtain a quasicircular configuration. On the other
hand, the initial momenta used for Model II (MII) were
computed using formula (4.7) from [15] to generate a
quasicircular orbit. The parameters and the values of the
kick obtained for the two models are summarized in
Table I. The initial configurations, consisting of two
equal-mass black holes with spins perpendicular to the
orbital angular momentum, are chosen to maximize
Eq. (3.31b) in [15] as suggested in [33]. Each black hole
has a total mass of m	 0:5 and we consider spin parame-
ters of the order of a=m	 0:8, which is below the recent
estimates presented in [39].

Results.—We performed evolutions of model MI with
the LEAN code using different resolutions and computed
the radiated linear momentum at different extraction radii.
In Fig. 1 we present the recoil speed vz � �Pz=m of the
final black hole as a function of time for the resolutions
1=36, 1=44, and 1=48. In this context we note that the x and
y components of v are smaller than 1 km=s, so that the z
component is practically identical with the total recoil. The
bottom panel of the figure demonstrates fourth-order con-
vergence of the recoil, and we estimate the uncertainty as
43 km=s or 1.5%.

The dependence of the recoil velocity on the extraction
radius is presented in Fig. 2. We find the resulting error to

be reasonably well approximated by a 1=rex falloff and
thus obtain uncertainties due to finite extraction radii of
120 km=s or 4.5%. Using a conservative error estimate, the
magnitude of the final kick is 2450� 250 km=s.

In order to obtain an independent estimate of the kick
magnitude for this type of spin configuration, we evolve
model MII using the BAM code. This model starts at larger
initial separation and represents a quasicircular configura-
tion. These simulations thus enable us to assess the un-

TABLE I. Initial puncture parameters and final kick velocity.

Run X Py mi Sx vkick�km=s�

MI �3:257 �0:133 0.363 �0:2 2450� 250
MII �4:0 �0:1125 0.287 �0:2 2650
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FIG. 1 (color online). Upper panel: the z component of the
recoil for model MI as a function of time for grid resolutions
h1 � 1=36, h2 � 1=44, and h3 � 1=48. Lower panel: the dif-
ferences scaled for fourth-order convergence.
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FIG. 2 (color online). Recoil for model MI as a function of
time for different extraction radii. Extrapolation to r! 1 yields
a magnitude of 2450 km=s with an error estimate of 4.5%. Also
shown is the kick from model MII using BAM.
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certainties arising from finite black-hole separation and
deviations from circularity.

The trajectories of the black holes are shown for model
MII in Fig. 3 and demonstrate how the black holes move
out of the initial orbital plane and acquire substantial
momentum in the z direction after the merger.

In summary, our simulations predict recoil velocities of
2500 km=s with a conservative error estimate of 10% or
250 km=s. This value can be compared with the e-
scape velocities from dwarf elliptical and spheroidal gal-
axies (&300 km=s) and from giant elliptical galaxies
(&2000 km=s) [40].

Our prediction is larger than any previous numerical
result by a factor of 5, but other numerical studies consid-
ered quite different initial configurations. Since the esti-
mate of 1000 km=s [33] for the spins studied here involves
a post-Newtonian argument, it is perhaps not surprising
that a fully relativistic simulation obtains a different result.
This result is very intriguing, but we point out that so far
only the two data points presented here are available. It will
be important to perform studies at higher numerical reso-
lution, and to study neighboring data sets, for example, to
vary the initial separation, spin configuration, and mass
ratio of the black holes.

Astrophysical relevance.—Before we discuss in more
detail astrophysical implications of our findings, we em-
phasize one additional important point: while our results
demonstrate that kicks as large as 2500 km=s are possible
provided the inspiraling black holes have appropriate spin
alignment and magnitude, it does not enable us to make

any statements on the probability that these kicks are
realized in typical astrophysical merger scenarios. A con-
clusive assessment of the astrophysical implications there-
fore requires systematic parameter studies as mentioned in
the previous section.

Recoil velocities close to or exceeding the escape veloc-
ities of the black hole’s host give rise to a population of
black holes away from the galactic nuclei [41]. In contrast
to the nonspinning case, the recoil velocities calculated
from our simulations exceed the escape velocities of even
massive galaxies and thus imply larger populations of
wandering black holes. Observational consequences of
wandering black holes have been discussed in detail in
Volonteri and Perna [42].

Black-hole recoil has also been found to give rise to a
core formation in the central density profile in the host
stellar bulge. Boylan-Kolchin et al. [43] find this effect to
be most pronounced for recoil velocities just below the
escape velocity.

Libeskind et al. [44] have further found that gravita-
tional recoil manifests itself as a scatter of the relation
between black hole and bulge mass. They find this effect to
be sensitive to the stability of the disc under galaxy merger.
Their simulations indicate a constraint of vkick &

500 km=s. Merritt et al. [45] find constraints of a similar
magnitude from narrow emission line analysis of quasar
spectra.

Ejection of black holes affects the rate of binary black-
hole inspirals in globular clusters and thus the predicted
event rates for gravitational wave observatories LIGO,
GEO600, TAMA, and VIRGO. The latest kick estimates
for nonspinning binaries have been taken into account by
O’Leary et al. [46]. It will be of interest to estimate the
impact of spins on such simulations.

The formation history of massive black holes at z	 6 is
often described in the context of hierarchical structure
formation via accretion and merger of black holes residing
in dark matter halos (see, e.g., [41] ). The ejection of black
holes from their hosts via gravitational recoil puts con-
straints on the maximum redshift at which the progenitor
seed holes might have started merging and might neces-
sitate accretion growth above the Eddington limit [40,47]
and may also lead to a population of intermediate mass
black holes [42]. Black-hole mergers would not occur if
seed black holes are rare at high redshifts so that black-hole
binaries would not commonly form as a consequence of
dark matter halo mergers [48].

Finally, black-hole recoil has been suggested to manifest
itself directly in observations of off-center radio-loud ac-
tive galactic nuclei [48] and off-nuclear ultraluminous
x-ray sources in nearby galaxies [49].

Astrophysical studies of the consequences of kick ve-
locities on these scenarios have so far commonly assumed
recoil velocities significantly below the values obtained in
this work. It will be interesting to see how these conse-
quences are affected by our results. It will also be impor-
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FIG. 3 (color online). Coordinate positions of the black-hole
punctures for model MII up to t � 180. The black holes move
out of the original plane and after merger the final black hole
receives a kick in the negative z direction.
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tant to estimate the kick magnitudes in a far wider volume
of parameter space.
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Note added.—After the first publication on gr-qc of the
results reported here, there have been two independent
computations of similarly large kicks, first reported in
[50] and in an updated version of [33]. Since our work is
based on the original version of [33], it is relevant to note
that the authors have now added new numerical data to
their pre-print for a configuration showing a kick of
1830 km=s. They have also modified their argument for
the extrapolation from post-Newtonian results (see also
[51] ) now obtaining an upper limit of 4000 km=s [52].
This is consistent with the results we report here and
supports the main point we make, namely that kicks
much larger than previously expected are indeed realized
in numerical simulations with potentially great signifi-
cance for astrophysics.
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