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We propose an experimentally feasible architecture with controllable long-range couplings built up
from local exchange interactions. The scheme consists of a spin bus, with strong, always-on interactions,
coupled dynamically to external qubits of the Loss and DiVincenzo type. Long-range correlations are
enabled by a spectral gap occurring in a finite-size chain. The bus can also form a hub for multiqubit
entangling operations. We show how multiqubit gates may be used to efficiently generate W states (an
important entanglement resource). The spin bus therefore provides a route for scalable solid-state quantum
computation, using currently available experimental resources.
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Spin qubits in quantum dots are considered leading
candidates for quantum computation because of their
long decoherence times and their affinity to scalable gating
techniques [1,2]. A prominent form of interaction between
the spins is the exchange coupling, which has long been
considered crucial for quantum computing in quantum dots
[1] and other spin-based qubits [3]. By utilizing coded
qubits, the exchange coupling can even accommodate
single qubit rotations [4,5]. Recent experiments lend sup-
port to the Loss and DiVincenzo proposal by demonstrat-
ing electrical control of the exchange coupling in spin
qubits [6]. However, the range of the interaction is only
tens of nanometers, leading to scaling and architectural
constraints [7]. In bulk systems, an effective interaction,
known as Ruderman-Kittel-Kasuya-Yosida or RKKY [8],
arises due to the exchange coupling between localized
moments and intermediary particles, such as electrons in
a commonly shared electron gas [9] or virtual excitons
[10]. The resulting effective interactions are long range.
It is presently unknown whether a spin chain could play a
similar intermediary role for electron spins in quantum
dots, thereby enabling a more scalable quantum computing
architecture. Here, we show how to engineer such long-
range interactions between remote qubits connected to a
spin bus, and we identify appropriate bus gate operations.
We also show how critical quantum resources, like an
entangled many-body W state, can be generated efficiently
by means of a spin bus. We find that long-range, many-
body interactions can be achieved using established, elec-
trically controlled gating methods.

Architectures that use an intermediary bus to facilitate
long-range interactions between remote qubits have been
studied in various qubit schemes, with the Cirac-Zoller
proposal for trapped ions as a preeminent example [11].
In semiconductors, there have been bus proposals to
transduce spin information into photon modes in resonant
cavities [12] or transmission lines [13]. Spin chains have

been proposed as a medium for long-range correlations
[14] and dynamical modes [15]. However, the adiabatic
spin bus remains unexplored in the context of quantum
computation.

A spin bus naturally combines long-range interactions
with the connectivity needed for computations. Several
versions of the bus are shown in Fig. 1. The bus itself is
formed of individual electron spins in a chain with strong,
static exchange couplings. External spin qubits are coupled
dynamically to the internal nodes of the bus by means of
electrical gates. We anticipate that a dedicated register may
be optimized for the special needs of the bus. However, the
main physical requirements are no different from ordinary
quantum dots in the Loss and DiVincenzo qubit scheme.

Spin interactions within the bus are described by the
Hamiltonian Hb � Jb

PN�1
i�1 sbi � sbi�1. Here, the bus spin

operators sbi act on the constituent spins, and we assume
the bus size N is strictly odd. (An N � 2 bus is considered
in [3].) We take the internal bus couplings Jb to be uniform,
although this is not essential for bus operation. When N is
odd, the bus spectrum exhibits a spin-1=2 doublet ground
state, separated from the excited states by a spectral gap
[16,17]

 �b ’ Jb�
2=2N; (1)

due to finite system size [18]. This ground state manifold,
spanned by fj0ib; j1ibg, forms the working space of the bus,
as illustrated in Figs. 2(a) and 2(b). If the ‘‘adiabatic
temperature’’ Tgate � 1=�gate (for gate period �gate) and
the physical temperature are both smaller than the mini-
mum gap, �min ’ �b, then the bus will remain in its work-
ing manifold once initialized. The coupling between the ith
qubit and the ith bus spin is given by Hi � Ji�t�s

q
i � sbi .

Restricting the bus to its ground state manifold, we obtain
an effective qubit-bus Hamiltonian:

 H�i � J�i �t�s
q
i � S; (2)
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 J�i � 2Jibh1js
b
izj1ib; (3)

where the spin operator S acts on the spin-1=2 bus mani-
fold. Numerically, we find that J�i ’ 	Ji=

����
N
p

, where the
���� sign holds for odd (even) bus nodes. Thus, the qubit-
bus coupling strength Ji and the size of the bus determine
its operating speed. We note that the effective couplings J�i
alternate between ferromagnetic and antiferromagnetic,
reminiscent of the RKKY interaction, while the effective
coupling strength decays as a power law, also similar to
RKKY. Below, we shall assume uniform qubit-bus cou-
plings (Ji � Jq, for all i) and consider only the antiferro-
magnetically coupled nodes.

The simplest operating mode of the bus is the serial
mode, in which the bus acts as a qubit proxy. The
Heisenberg interaction H�i generates a SWAP gate between
the qubit and the bus [1], after a gate time �SWAP ’

�
����
N
p

=Jq. The serial gate protocol proceeds as follows:
(i) SWAP qubit onto bus, (ii) perform root-SWAP gate be-
tween bus and target qubits, (iii) SWAP bus back onto
original qubit. The ideal final state corresponds to a root-

SWAP between the qubits, leaving the bus in its initial state.
Note that the initial state of the bus is irrelevant for serial
operations. However, it must be initialized into its working
manifold. This can be accomplished quickly by thermal-
ization, when the gap �b is much larger than the
temperature.

The scaling properties of the serial operating mode are
determined by the bare coupling constants Jb and Jq, and
the bus size N. Using the relations given above, the adia-
baticity criterion, 2�< �SWAP�b, can be rewritten as
Jb=Jq > 4

����
N
p

=�2. Scaling up to large N therefore depends
on arranging for a large ratio between the coupling con-
stants. Because of the exponential dependence of the ex-
change coupling on the quantum dot separation and the
barrier height, one can easily imagine a coupling constant
ratio of order Jb=Jq > 100. This suggests a bound of N <
60 000 for the bus size, corresponding to a gap of �b �
1 mK when Jb � 1 meV. Alternatively, the gap increases
to 100 mK when Jb � 2 meV, for a bus of size N < 1200.

To compare the scaling properties of the serial bus gate
to a conventional linear qubit array, we consider a SWAP

gap

b

Jq

E
ne

rg
y 

sp
ec

tr
a 

 (
J b

=
 1

)

-1

-1.5

-2

-2.5

-3
(a)           (b)            (c)           (d)

*
0 b

1 b

3           5       7     9 11
Size, N

0.9

0.7

0.5

0.3

E
ff.

 c
ou

pl
in

g,
 J

q*

∆
〉

〉

FIG. 2 (color online). Energy spectra for an N � 7 bus. The
ground state doublet (the bus manifold) lies below the gap (red
lines). Excited states lie above the gap (black lines). (a) No
coupled qubits, B � 0: bus manifold is doubly degenerate.
(b) No coupled qubits, B � 0:03: the doublet splits, defining
the working states of the bus. (c) One coupled qubit, B � 0: bus
and qubit states hybridize to form a singlet and a triplet, split by
J�q. (d) One coupled qubit, B � 0:03: the triplet states split. In
(a)–(d), we use Jb � 1 and Jq � 0:3, with the dimensionless
Zeeman coupling HB �

P
iBsiz, summed over all spins. Inset:

log-log plot of the effective coupling J�i from Eq. (3), averaged
over the antiferromagnetic bus nodes (lower, black curve), with
bare couplings set to Ji � 1. Upper (red) curve shows apparent
asymptotic behavior, J�q ’ 1:198N�1=2.
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FIG. 1 (color online). Spin-bus architectures. (a) The spin bus
is a chain of electronic spins (�) with strong, static couplings
(heavy lines). External qubits (
) can be coupled to the bus at
any node (light lines). Effective long-range interactions allow for
communication between sectors dedicated to rotation, readout or
memory, which may benefit from isolation. (b) Additional local
couplings enable parallel interactions, in addition to bus-
mediated interactions. (c) Coded qubits or larger clusters.
(d) Within the ground state manifold, the bus acts as a simple
spin-1=2 qubit, except for its plurality of qubit couplings.
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protocol between two qubits on opposite ends of an
N-qubit chain. For the conventional array, this involves a
series of (2N � 3) SWAP gates. Since some gates of dura-
tion �=Jq may be performed in parallel, the total gate time
is roughly N�=Jq. The corresponding spin-bus protocol
involves just three SWAPs, with a total gate time of
3�

����������������
2N � 1
p

=Jq, where we have assumed a (2N � 1)-qubit
array, with N antiferromagnetically coupled qubits and
(N � 1) unused ferromagnetically coupled qubits. Thus,
for a serial SWAP gate, the bus provides a quadratic
speedup. A modest amount of parallel (qubit-qubit) con-
nectivity [Fig. 1(b)] also enables local gates, and parallel
gate operations.

We can compare the propagation of errors in SWAP

protocols by introducing small random errors of magnitude
� into the couplings: Jq ! ~Jq � Jq�1	 ��. If USWAP�Jq�
represents a perfect multiqubit SWAP gate, then the operator
norm � � jjUSWAP�~Jq� �USWAP�Jq�jj describes the com-
pounded error. We have performed numerical simulations
of ~Jq errors in a conventional linear qubit array. By aver-
aging over random error realizations, we observe that the
resulting errors add up as a type of random walk, with � /
��2N � 3�0:68. An equivalent analysis for the spin bus
shows that � does not depend on N, leading to a scaling
improvement of particular significance for quantum error
correction [7].

In the serial mode, the spin bus functions as a simple
conduit for quantum information, leading to a new scaling
law for long-range gating. However, the full potential of
the spin bus is achieved through simultaneous multiqubit
couplings, which enable quantum-parallel processing. As
an example, we now show how to efficiently generate W
states of n qubits [19], defined by jWni � �j00 . . . 001i �
j00 . . . 010i � j00 . . . 100i � � � � � j10 . . . 000i�=

���
n
p

. Such
highly entangled states form a critical resource for quan-
tum computation because of their robustness to particle
loss [20] and their relative immunity to dephasing [21].

We first show how to construct multiqubit bus gates.
Simultaneous multiqubit couplings to the bus are described
by the Hamiltonian Hn � J�q

Pn
i�1 sqi � S. Here, the bus

behaves as an ordinary qubit when it is restricted to its
working manifold, except for its plurality of couplings
[Fig. 1(d)]. Here we assume the effective coupling con-
stants J�q are identical for all qubits, although lifting this
restriction enables a richer set of multiqubit gates.

The unitary evolution operator for the qubit-bus system
is given by U�t� � e�iHnt. Although U�t� possesses off-
diagonal terms that entangle the qubits with the bus, these
terms should vanish for a true bus gate. We therefore seek
special evolution periods t � � for which bus decoupling
occurs. The task of computing U�t� is simplified in the
angular momentum basis fj0i; j1ig � fjj; �;mig, where the
states on the left describe the bus manifold, and the qubit
states on the right are classified by their angular momen-
tum quantum numbers, j andm, and the degeneracy label �
[5]. (For example, in the case of four qubits, there are two

orthogonal j � m � 0 singlet states, whence � � 0, 1.) In
the angular momentum basis, U�t� is block diagonal with
blocks of size 1� 1 and 2� 2. The latter correspond to
pairs of states given by fj0ijj; �;m� 1i; j1ijj; �;mig. We
find there is a time � for which all the 2� 2 blocks are
simultaneously diagonal, given by � � 4�=J�q when n is
even, and � � 2�=J�q when n is odd. (The case n � 2 is
anomalous, with � � 4�=3J�q.) The resulting diagonal bus
gates are
 

h0; j; �;mjU���j0; j; �;mi � h1; j; �;mjU���j1; j; �;mi

� e�ijJ
�
q�=2: (4)

When n is even, we find that U��� � 1 (except when n �
2). However, the case of odd n produces nontrivial bus
gates. Since the multiplicity of each diagonal element in
U��� is even, we may reorder the basis such that U��� �
diag �Un;Un� � 1b �Un. This is a remarkable result: the
action of the U��� gate is to return the bus to its original
state, while implementing a nontrivial transformation Un
on the qubits. On the other hand, imperfect gate timing
may produce unwanted entanglements between the qubits
and the bus. For small timing errors of the form J�q~� �
2��1� ��, we compute the operator error norm � �
jjU�~�� �U���jj � ��=2��n� 2��, and the state fidelity,
1�f�1�Trf
U���j�ih�jUy����
U�~��j�ih�jUy�~���g<
��2=2��n�1�2�2.

The temporal scaling properties of the bus gate derive
from the fact that � is independent of n. Thus, in terms of
time resources, multiqubit bus gates cost the same as few-
qubit-bus gates. In contrast, many time steps are needed
when building conventional multiqubit operations out of
local gates, especially when quantum error correction is
taken into account. The spatial scaling properties of the bus
gates are determined by diagonalizing the HamiltonianHn.
The resulting spectrum has width �E � �1� n�J�q=2,
which grows linearly with the number of coupled qubits.
For adiabatic operation, this spectrum should lie entirely
below the gap: �E< �b. We consider Un acting on n
antiferromagnetically coupled qubits, corresponding to a
minimum bus size of (2n� 1). The resulting bound on the
gate size is n < ��2Jb=Jq

���
2
p
�2=3 ’ 79, where we have used

our previous conservative estimate of Jb=Jq ’ 100.
We now develop protocols for generating Wn states,

using the multiqubit gatesUn. The probabilistic procedures
require the measurement of certain ‘‘sacrificial’’ (s) qubits.
Following a successful measurement outcome, the remain-
ing ‘‘data’’ (d) qubit register is found in the desired Wn
state. A whole family of protocols can be derived, involv-
ing a variable number of sacrificial qubits.

Two optimal protocols stand out. In the first case, just
one sacrificial qubit is used. Consider the specific case
of two data qubits. We find that the bus gate U3, operating
on the initial state j00idj1is, gives �

���
8
p
=3�jW2idj0is �

�1=3�j00idj1is. If measurement of the sacrificial qubit
gives j0is, then the data register will be found in the state

PRL 98, 230503 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
8 JUNE 2007

230503-3



jW2id. The protocol can be extended to any system size,
obtaining jWni with probability p � 4n=�n� 1�2. (See
[22] for a related quantum oscillator protocol.)

In the second case, we use (n� 1) sacrificial qubits in an
n-qubit data register. The resulting success rate is much
higher, but at the cost of some qubits. The protocol can be
expressed in the computational basis as follows:
 

U2n�1j1i
�n
d j0i

��n�1�
s !

Ms
jWnidj1i

��n�1�
s ;

fp � n
�2n� 2�!!=�2n� 1�!!�2g; (5)

where Ms signifies the measurement of the sacrificial
qubits and p is the probability of success. In other words,
the qubits are initialized to a simple product state of 1’s in
the data register and 0’s in the sacrificial register. An
entangling U2n�1 gate is performed on the combined regis-
ter, followed by a parallel measurement of all the qubits in
the sacrificial register. With high probability p, the sacri-
ficial register will be found in the state with all 1’s, with the
data register in the desired state jWnid. To compute p, we
express the initial state in the angular momentum basis.
After applying U2n�1, we return to the computational basis
using Clebsch-Gordan techniques. We see that p > �=4 ’
0:79 for all n, so on average, only 1–2 iterations are needed
for a successful outcome. In comparison, a deterministic
protocol for generating jWni via local interactions involves
a series of n exchange gates and an attendant overhead for
quantum error correction.

Finally, we consider the decoherence properties of a spin
bus. The combination of a large bus size and its always-on
couplings leads to decoherence mechanisms that differ
from single-spin qubits. For example, fluctuations in the
interbus coupling constant Jb do not cause dephasing of the
bus state, in contrast with single-spin qubits [23]. Instead,
they lead to relatively weak fluctuations of the gap, �b. The
main dephasing mechanisms for the spin bus are fluctua-
tions of the qubit-bus couplings Jq, and the locally and
temporally varying magnetic fields at the bus nodes, aris-
ing from nuclear spins [16,24]. In general, we expect better
decoherence properties from a spin bus than an equivalent
array of single-spin qubits. For the bus, decoherence rates
will scale as

����
N
p

or N when the nuclear dynamics result in
1=f or Gaussian noise, respectively. However, the true
physical dynamics is not known at present.

We have shown that the exchange coupling possesses a
significant untapped potential for quantum dot quantum
computing in the form of long-range interactions via a spin
bus. The main scaling properties depend on the ratio
between the raw qubit and bus coupling constants, Jq=Jb,
and may allow for bus sizes greater than 103. But while
long-range couplings between spin qubits are beneficial,
the true power of the spin bus originates from quantum
many-body physics. To utilize this potential, we have
shown how to generate entangling gates Un and multiqubit

Wn states. For both serial and multiqubit operations, the
spin bus provides a new scaling power law for spin-based
quantum computing.
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