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We observe the phenomenon of stochastic resonant signaling in signal amplification enzyme cascades,
where certain optimal reaction rates minimize the average threshold-crossing time. We develop a new
analytical technique to obtain the mean first passage time, based on a novel decomposition of the master
equation. Our analytical results are in good agreement with the exact numerical simulations. We
demonstrate that resonant behavior may be a ubiquitous phenomenon in stochastic threshold crossing
in cell signaling. The physical principles behind this phenomenon are elucidated.

DOI: 10.1103/PhysRevLett.98.228301 PACS numbers: 82.20.Uv, 82.40.Qt, 87.16.Xa

Introduction.—Signaling proteins often exist in a small
number of copies in cells or subcellular compartments.
Consequently, the discreteness in the number of reacting
particles and the fundamentally random nature of chemical
reactions lead to ubiquitous noise production. Thus, sto-
chastic chemical dynamics is often invoked to describe
cellular signaling processes, especially when noise quali-
tatively changes the system behavior [1–5]. For example,
stochastic versus deterministic approaches predict differ-
ent outcomes when modeling threshold crossing in specific
biological reaction networks [6–11]. Interesting biological
examples of threshold crossing induced by stochastic sig-
nals include the lambda phage infection [12] and the
hierarchical enzymatic reactions in the mitogen-activated
protein kinase cascades [13,14].

The main focus of this work is the problem of stochastic
threshold crossing in nonlinear signal amplification cas-
cades. We found that a noisy signal reaches the threshold
fastest when the upstream and downstream reaction time
scales are related in a specific way, indicating the existence
of internal resonances embedded in cellular signaling cas-
cades (see Fig. 1). This phenomenon is closely related to
resonant activation which has been studied intensively and
found interesting applications in physics, chemistry, and
biology [15–19]. Our findings demonstrate how reaction
rates of various nodes could be collectively tuned in protein
signaling networks such that a signal is most efficiently
picked up and transmitted through the network. We eluci-
date the physical nature of the observed resonant phenome-
non with an approach based on the master equation and
generating function description of stochastic chemical
kinetics.

Because of the well-known difficulties in solving equa-
tions of stochastic kinetics, most prior analytical results on
stochastic threshold crossing were obtained in the limit of
either very short or very long correlation times [20,21]. In
addition, noise was often modeled in the continuous limit,
with the noise source considered of external origin
[15,16,22]. To take into account the particle discreteness
and the non-Gaussian character of the intrinsic noise, we

develop here a novel analytical scheme which allows us to
obtain approximately the mean first passage time. Our
theory works well in the whole parameter regime, includ-
ing the difficult cases where the upstream and downstream
reaction time scales are not well separated.

The enzymatic signal amplification cascade, shown in
Fig. 1(a), is one of the most fundamental elements in
protein signal transduction networks, commonly found
embedded in many important signaling cascades [14,23].
For instance, R could represent an inactive kinase, which
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FIG. 1 (color online). (a) A 3-step cascade, where activation of
R� in the upstream reaction, R! R�, results in subsequent
activation of A� in the downstream reaction, A� R� ! A� �
R�. g � 2k, � � 0:25, � � 1:5, �2 � 0:1, �2 � 2:5 with initial
condition �NR;NR� ; NA; NA� ; NB; NB� � � �100; 0; 100; 0; 100; 0�;
(b)–(d) Log-log plot of the first passage time Tf vs the reaction
rate k. (b) Comparison of different computations for the starting
2-step cascade in (a): Gillespie simulation (�), matrix diago-
nalization of Eq. (1) (dotted line), first order approximation
Eq. (4) (dashed line), and second order approximation (solid
line), with the A� critical value nc � 50. (c) Gillespie simulation
as in (b) with the second reaction replaced by R� � A� AR� !
R� � A� and the critical value nc � 35. (d) For the full 3-step
cascade with the B� critical value nc � 75.
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becomes activated into R� with a rate g. Alternatively, R
could be a surface receptor which is activated by binding of
an external ligand. The activated kinase R� phosphorylates
the next kinase A downstream with a rate �. A� sponta-
neously decays to Awith a rate � and R� to Rwith a rate k.
The total numberN of A and A� is a constant of motion. For
simplicity, we assume that the R activation is a Poisson
process. Without this assumption, all the derivations below
would still apply, with only minor modifications. We take
the A� number average, �n, to be well below some prede-
termined critical value nc. Rare fluctuations may bring n
over nc, triggering further processes downstream.
Henceforth, we study how the rare threshold crossings
depend on the decay rate, k, when the average R� number,
�m � g=k, is held fixed. Mathematically, we compute the

first passage time Tf for the number n of protein A� to
reach nc under the enzymatic influence from R�. Tf is a
random variable which depends on nc and has a well-
defined average, hTfi, the so-called mean first passage
time (MFPT).

The probability distribution function (PDF) P�m; n�, of
having m R�’s and n A�’s, and the related master equation
may be used to describe its stochastic dynamics [24]. An
absorbing boundary condition, P�m; nc� � 0, is used to
model the threshold crossing. Therefore, there is a net
probability flow out of the system and so the total proba-
bility Pt �

P
m;nP�m; n� decays exponentially in the long-

time limit. The MFPT is calculated as Tf �
R
1
0 t�	dPt� �R

1
0 dtPt (for notational simplicity we use Tf instead of hTfi

here and later).
The master equation for P�m; n� is defined on a two-

dimensional lattice in the (m, n) plane. Direct computation
of the corresponding eigenvalues requires diagonalization
of a matrix with a dimension �m� 1��n� 1�, which could
be very expensive even for m, n values of the order of
hundreds. Below, we decompose the master equation into
two equations, each defined on a one-dimensional lattice.
This reduction of dimensionality plays a key role for the
subsequent derivation of the analytical solution, also pro-
viding in-depth physical insights into the mechanism of the
stochastic threshold-crossing process. An example of a
long-time PDF, P�m; n�, is shown in Fig. 2(a). The absorb-
ing boundary at n � nc induces a decay with rate rm,
accounting for the outgoing flow at (m, nc). Con-
sequently, the total decay rate �1 is a function of these
decay rates, frmg. If the decay is slow, the initial transient
dynamics does not contribute significantly to the MFPT,
which is instead determined by the asymptotic exponential
decay. In the long-time limit, P�m; n� is characterized by a
stable profile, which diminishes exponentially with a con-
stant rate, P�m; n� / e	�1t.

Our new approach is to treat separately the R	 R� and
A	 A� dynamics and, then, reincorporate back the inter-
actions by using renormalized coupling variables. Thus,
the derivation below contains three steps: (1) obtain the
MFPT in terms of the rates rm [to be calculated in step (2)],

(2) compute the decay rates rm with the R� number m held
stationary, (3) to take into account random switching
among various m states, modify each rm by introducing a
renormalized variable M�m�.

First, we relate the MFPT to an eigenvalue equation in
the R	 R� dynamics. Let Qm �

P
nP�m; n� denote the

marginal probability for having m R�’s in the system [see
Fig. 2(a)]. With absorption, each Qm satisfies an equation
of the form:

 

dQm

dt
�gQm	1�k�m�1�Qm�1	�g�km�Qm	rmQm;

(1)

where the outgoing flux is modeled by the last term. In
general, the leakage rate rm is a complicated, unknown
function of time, which depends on both the R� and A�

dynamics.
In the long-time limit, each rm relaxes to a specific time-

independent value. If all the rm’s were known, the eigen-
value problem of Eq. (1) could be solved numerically by
direct matrix diagonalization, resulting in the dotted curve
in Fig. 1(b). To obtain an analytical solution, we rely on
successive approximations. Since the decay rates are slow,
we use ansatz Qm � exp�	g=k� �g=k�

m

m! fm which gives the
equilibrium R� distribution with no absorption when fm �
1 [24]. Substituting it into Eq. (1), an equation for fm is
derived, which may be cast into an integral form
 

fm � e	�g�km�rm�t




�
1�

Z t

0
dt0e�g�km�rm�t

0
�kmfm	1 � gfm�1�

�
; (2)

where fm�0� � 1 is used, corresponding to an initial equi-
librium distribution for R�. If the decay rate is small, then
fm�t� � e	�1t is a good zeroth order approximation, de-
scribing the asymptotic exponential decay with a fixed
PDF profile. When substituted into Eq. (2), it leads to the
first order solution, which then produces the MFPT Tf �
1=�1
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FIG. 2 (color online). (a) The PDF, P�m; n�, on the two-
dimensional lattice is shown. Filled curves indicate the condi-
tional probability distribution ~Pm�n� of A�, for realizations with a
specific number of activated R� receptors, m. The cutoff is shown
at n � nc and the marginal probability Qm �

P
nP�m; n� is

shown with thick bars on the vertical panel; (b) the A� distribu-
tion for different R� switching rates: the large rate (dotted line
for any m), the small rate (dashed line for m> �m), and the
intermediate rate (solid line for m> �m).
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 1=�1 �

�
�rm 	 �1�=�g� km� rm� � �g� km�=�1

g� km� rm 	 �1

�
:

(3)

We can explicitly solve for �1

 �1 �

�
rm

g� km� rm

���
1

g� km� rm

�
: (4)

The notation hlmi �
P
1
m�0 lm exp�	g=k��g=k�m=m! de-

notes an average of any function of m. Second or higher
order approximations may be obtained by using Eq. (2)
recursively [solid line in Fig. 1(b)].

Our next task is to find the asymptotic values of frmg. If
the number m of R� is fixed and Pm�n� denotes the condi-
tional probability of having n A�’s, the generating function
�m �

P
nPm�n�y

n satisfies a first order linear partial dif-
ferential equation

 

@�m

@t
��1	y�

�
�
@
@y
	�mN��my

@
@y

�
�m	 lm�t�y

nc ;

(5)

where the last term was introduced to account for proba-
bility leakage at n � nc, with lm�t� being an unknown rate
which maintains Pm�nc� � 0. Starting with n0 A

�’s, Eq. (5)
without the last term has an approximate binomial solution

 �m�y� � �1� hm�t��y	 1�N; (6)

with

 hm�t� �
n0

N
e	����m�t �

�m
���m

�1	 e	����m�t�: (7)

hm is characterized by a relaxation time �r � 1=����m�,
beyond which hm approaches a steady value �m=���
�m�, irrespective of the initial condition.

The rate lm�t� cancels the probability flow from the state
n � nc 	 1 to the boundary, and therefore can be written
as lm�t� � �m�N 	 nc � 1�Pm�nc 	 1�. If the leakage is
slow, in the long-time limit, �m, Pm�nc 	 1�, and, thus,
lm�t� decay exponentially. We may substitute the asymp-
totic forms �m � �m exp�	rmt�, l�t� � rm exp�	rmt�
into Eq. (5) and by canceling out the exponential time
factor arrive at

 	rm�m��1	y�
�
�
@
@y
	�mN��my

@
@y

�
�m	rmy

nc :

(8)

The constant factor rm before the exponential in l�t� is
chosen to satisfy Eq. (8) at y � 1, since �m�1� � 1. The
eigenvalue Eq. (8) can be solved explicitly
 

�m�y� � ��m� �y�N	�rm=�m����1	 y�rm=�m��


 �C� o�ync�; (9)

where C is a constant to be determined. Because of the
absorbing boundary, the eigenfunction �m satisfies
Pm�n� � 0 for n � nc. The term o�ync� in the square

brackets on the right-hand side of Eq. (9) only contributes
terms with n > nc, so the condition Pm�nc� � 0 requires
that the coefficient of ync outside the square brackets be
equal to zero, which sets up the eigenvalue equation for rm.
We obtain rm by solving this equation numerically.

The final step is to consider the influence of the R�

fluctuations on the leakage rate rm. As investigated pre-
viously [24], the switching rate k has a dramatic effect on
the A� distribution, see Fig. 2(b). For the fast R	 R�

reaction, the relaxation time �r [defined after Eq. (7)] is
large compared to the switching time �s (defined in the
next paragraph) and effectively only the average �m � g=k
of R� is seen in the A	 A� dynamics, so every reaction
path gives an almost identical A� PDF [dotted curve in
Fig. 2(b)]. Thus, in Eq. (7) hm � �h � � �m=���� �m�when
t! 1, for all m’s. In the case of slow R	 R� reaction, �r
is small compared to �s and the A� PDF closely follows
each reaction path of R�, such that hm ��m=����m�
for each m [dashed line in Fig. 2(b)]. In the intermediate
regime, the A� PDF is expected to lie between these two
limits with some effective ~hm [solid line in Fig. 2(b)].
Based on the limiting functional form of hm, we assume
that a renormalized value M�m� instead of m, determines
~hm through the defining equation

 

~h m �
�M�m�

���M�m�
: (10)

In a mean-field sense, we assumed that the asymptotic
distribution ~Pm�n� with absorption [see Fig. 2(a)] is also
binomial and determined by ~hm through Eq. (6) and (7).

An analogy with quantum mechanics might be helpful.
The �m state corresponds to the ‘‘ground state’’ of the R�

distribution. Other m states (both below and above �m) are
excitations with a finite (short) lifetime, reflecting smaller
probability of their occurrence. An average excitation path
starts from the ground state ( �m), diffuses to the specified m
state in an average time �m, remains there for �ex �
1=�g� km�, and then quickly decays back to �m in a time
�d. The switching time �s � �m � �ex � �d. The ‘‘diffu-
sion’’ time is approximated by �m � ��m	 g=k�2=�g�
km�, since the diffusion coefficient for the R	 R� reaction
is g� km [25]. � is a constant independent of m, g, and k
and is determined numerically by matching the numerical
MFPT for a large k.

Most often �m � �ex, �m � �d, so �m � �s and it de-
termines the value of hm in the excited states. Therefore,
for the average path, ~hm is given by substituting t � �m and
n0 � N �h into Eq. (7),

 

~h m � �he	����m��m �
�m

���m
�1	 e	����m��m�; (11)

from which the renormalized M�m� is obtained using
Eq. (10). Thus, in the intermediate regime, the A	 A�

reaction effectively ‘‘sees’’ instead of m a renormalized
value M�m� and we should replace m by M�m� in Eq. (5),
(8), and (9) when calculating rm. As anticipated, M�m�
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defined by Eq. (10) and (11) reproduces the limiting be-
haviors discussed above.

Using our approximation, we calculated the MFPT for
different reaction rates k, keeping the average �m � g=k
fixed, and compared them with Gillespie computations
over 105 paths. As shown in Fig. 1(b), the MFPT curve
from the analytical approximation agrees well with the
numerical simulation results. The second order approxi-
mation (solid lines) improves perceivably over the first
order (dashed lines). All the curves display a minimum,
which signifies the existence of an optimal value of k,
where the probability flow is most efficiently transmitted
to the n � nc state. We also found that changing � mainly
affects the MFPT curve corresponding to large k values.

The previously mentioned three time scales play a major
role in the threshold-crossing dynamics: (1) �s, the R	 R�

switching time, (2) �r, the relaxation time of the A� distri-
bution, (3) �cm � 1=rm, the characteristic leakage time.
These time scales are intermingled and, in combination,
determine the MFPT. �s controls how fast the receptor R�

switches between different m states. �r determines how
quickly the PDF of A� follows the switching dynamics of
R�. �cm governs the frequency of a system visiting the
absorbing boundary. Physically, when k! 0, the R	 R�

switching time �s and, thus, MFPT go to infinity. When
k! 1, the MFPT approaches a constant asymptotic value
determined by �m, which is large in the current computation
since the average hni is assumed to be well below the cutoff
nc. The resonant signaling happens at some intermediate
k � k0, where the MFPT reaches a minimum. The optimal
switching time forR� should be long enough for an average
A� trajectory to diffuse to the boundary when m> �m, but
short enough for R� to make frequent visits to different m
states, when m< �m. Thus, k0 is located where the switch-
ing time of R	 R� is about equal to the escape time
through nc for a typical system (k0 � 1 in Fig. 1).
Consequently, when � and � increase, the escape rate
increases and, therefore, k0 moves to larger values.

Analogous arguments have been used in the case of
particles crossing a dichotomously fluctuating barrier
[15,18], but the physical picture of resonance in a nonlinear
enzymatic cascade with discrete noise is significantly more
complicated. Here, we have many discrete states and time
scales. The noise is intrinsic and has very rich statistical
features. Three key elements are necessary for the occur-
rence of the resonant signaling: stochastically switching
enzymes, a downstream relaxation dynamics, and an ab-
sorbing boundary at the tail of the PDF. These conditions
are often satisfied in many threshold problems of the
biological networks. Therefore, we suggest that the sto-
chastic signaling resonance is a ubiquitous phenomenon in
cell signaling cascades. For example, the response curves
also show similar nonmonotonic behavior for a 2-step
cascade with Michaelis-Menten kinetics [Fig. 1(c)], a 3-

step cascade without feedback [Fig. 1(d)], and with feed-
back (data not shown).

In summary, we discovered the phenomenon of stochas-
tic resonant signaling in cellular enzyme cascades, where
certain optimal reaction rates minimize the average signal
propagation time. Our computations indicate that this phe-
nomenon is ubiquitous, motivating systematic analytical
and numerical investigations of the MFPT landscapes in
various biologically relevant signal transduction cascades.
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