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A microscopic theory for cation diffusion in polymer electrolytes is presented. Based on a thorough
analysis of molecular dynamics simulations on poly(ethylene) oxide with LiBF4, the mechanisms of
cation dynamics are characterized. Cation jumps between polymer chains can be identified as renewal
processes. This allows us to obtain an explicit expression for the lithium ion diffusion constant DLi by
invoking polymer-specific properties such as the Rouse dynamics. This extends previous phenomeno-
logical and numerical approaches. In particular, the chain length dependence of DLi can be predicted and
compared with experimental data. This dependence can be fully understood without referring to
entanglement effects.
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Transport of cations in complex systems is of major rele-
vance in the field of disordered ion conductors. Speci-
fically, polymer electrolytes [1–3], using lithium salts,
have been intensively studied experimentally and theoreti-
cally due to their technological relevance. Free lithium ions
(Li�), uncomplexed by the anions, are the desirable charge
carriers in electrolytic applications. A theoretical descrip-
tion of ionic dynamics in terms of microscopic properties is
difficult because the dynamics of the cations and the
polymer segments occur on the same time scale [4,5]. In
contrast, the dynamics of ions in inorganic systems can be
characterized by ionic hops between permanent sites, sup-
plied by the immobile network [6].

The phenomenological dynamic bond-percolation
model (DBP) [7] considers that the long-range ion trans-
port is enabled by renewal events which lift the blockages
in the ionic pathways. Since the dynamics after a renewal
event is statistically uncorrelated to its past, the resulting
cationic diffusion constant DLi is determined by a2=6�ren,
where a2 and �ren denote the typical mean square displace-
ment (MSD) and the time period between two consecutive
renewal events, respectively. In the DBP, the renewal pro-
cess is attributed to a local structural relaxation process
governed by the polymer dynamics. Another fruitful ap-
proach to understand the mechanisms of cation dynamics
is by means of molecular dynamics (MD) simulations [8–
12]. Cationic dynamics can be divided into three important
mechanisms: (M1) motion along a chain (‘‘intrachain’’),
(M2) motion together with chain segments, using the chain
as a vehicle (‘‘segmental’’), and (M3) jumps between
different chains (‘‘interchain’’); see also [13]. This is
sketched in Fig. 1. Based on the insight from MD simula-
tions, Borodin and Smith [13,14] have recently formulated
a microscopic transport model. Employing appropriately
defined Monte Carlo moves and implicitly using the con-
cept of renewal process, the Li� dynamics has been repro-
duced. Among other things, they have quantified the
relevance of the variety of cation transport mechanisms
that contribute to the macroscopic cation diffusivity DLi.

Our methodology is founded on both approaches. First,
we express a2 in terms of (M1) and (M2) by exploiting the
fact that the Li� dynamics is strongly correlated to the
polymer segmental dynamics, which, in turn, can be sepa-
rated into statistically uncorrelated center-of-mass (c.m.)
dynamics of the polymer chain (zeroth order Rouse mode)
and its internal dynamics (higher order Rouse modes)
[15]. This implies, for the Li� ions, DLi � Dc:m: �
DM��1; �2; �3�. The time scales �1, �2, and �3 characterize
each of the mechanisms (M1), (M2), and (M3), respec-
tively. Extending Ref. [13], we derive analytical formulas
in terms of �i with correlations between (M1) and (M2)
being taken into account. The time scales are extracted
from long MD simulations of a model polymer electrolyte
system. Second, we explicitly show that (M3) can be
identified as a renewal process so that, indeed, a prediction
of the long-time behavior, i.e.,DLi, becomes possible. As a
central feature we obtain the N dependence (N: number of
monomers per chain) of the �i and thus of DLi. Two
different N regimes are obtained in agreement with experi-
mental data.

Atomistic MD simulations are performed for the system
poly(ethylene) oxide (PEO) and LiBF4 with a concentra-
tion of EO:Li � 20:1 (EO: ether oxygen) under constant
density, volume, and temperature conditions. The two-

FIG. 1. Time scales: �1 is the time scale for intrachain ionic
motion (M1), �2 is the relaxation time of the polymer chain
(related to �R: see text for details) (M2), and �3 is the waiting
time of an ion between two interchain jumps (M3).
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body effective polarizable potential employed is described
in Ref. [5]. We have simulated this system for different
chain lengths (N � 24 and N � 48) and at different tem-
peratures (400 K � T � 450 K). The respective densities
have been chosen to set the average pressure to values of
the order of 1 MPa. This Letter discusses the results for the
N � 48 system at T � 450 K unless specified otherwise.

As has been observed before [5,9–11], a Li� ion is, most
of the time, coordinated to a single polymer chain through
EO atoms, interrupted by infrequent transitions between
different chains. A Li� ion which is bound to a polymer
chain is coordinated to a few (�5) and mostly contiguous
oxygen atoms. After serially indexing the oxygen atoms of
a chain in succession, we mark the position of the Li� at
the chain by the average index n�t� of the enumerated
oxygen atoms that belong to its coordination sphere. To
elucidate (M1), we determine the average-square variation
h�n�t�2i of the average oxygen index under the constraint
that the Li� ion is attached to the same chain during the
time interval of length t. The result is shown in Fig. 2. To a
good approximation, one observes diffusive dynamics
h�n�t�2i � 2D1t, where D1 is the intrachain ionic diffu-
sivity. To account for the slight deviations from linear
behavior, we choose D1 � h�n��2�

2i=2�2 (�2 defined in
the next paragraph). For later purposes, we define

 �1 � �N � 1�2=�2D1; (1)

where �1 is a measure of the time it takes for the lithium ion
to diffuse from one end to the other end of the polymer
chain. Here we obtain �1 � 150 ns (with D1 from Fig. 2).

To characterize (M2), we first analyze the polymer
dynamics. In Fig. 3(a), we display the MSD gO�t� for an
average oxygen atom (i.e., all oxygen atoms were consid-
ered for analysis irrespective of the presence or absence of
Li� near an oxygen atom), characterizing the dynamics of
the polymer segments. According to our general proce-
dure, all MSD functions are computed relative to the
polymer c.m. It exhibits a Rouse-like behavior [15,16]
for short times gO�t� / t�, with � � 0:6, saturating at
gO�t� � R2

e=3, where R2
e is the mean square end-to-end

distance of the polymer. We have included the theoretical
Rouse prediction, obtained via numerical summation

 g�t=�R� �
2R2

e

�2

XN�1

p�1

1� exp�� p2t
�R
�

p2 ; (2)

where �R and p denote the Rouse time and the mode
number, respectively, and the sum is calculated over N �
1 eigenmodes. It yields a reasonable description of the
observed MSD, using �R � 19 ns; see also [17]. Quali-
tatively, it is expected that the oxygen atoms which are
temporarily bound to a Li� ion ought to be somewhat
slower due to the decrease in the local degrees of freedom.
This was checked by calculating gbound

O �t� for those oxygen
atoms which, during the whole time interval of length t, are
bound to one Li� ion. Indeed, gbound

O �t� is also consistent
with the Rouse prediction, using a longer Rouse time �2 �
42 ns. Naturally, �2=�R > 1 reflects the immobilization of
the polymer segments due to the ions. Note that, for longer
t, fewer oxygen atoms contribute to this curve so that the
statistics gets worse.

Switching to the Li� dynamics, we first calculate the
MSD gM2

Li �t� of Li� ions for which jn�t� � n�0�j � 1; see
Fig. 3(a). For t > 2 ns, this curve is close to gbound

O �t�. Thus,
we can conclude that the Li� motion strictly follows the
oxygen dynamics in the absence of (M1). In other words,
the cations and the polymer segments exhibit coupled dy-
namics. Additionally, we find that, for shorter times, the
Li� ions are slower than the corresponding oxygen atoms.

In the absence of ion jump events between chains (M3),
one would have DM � 0. We have identified the jumps
from a microscopic analysis of the trajectories. On average
after �3 � 110 ns, a Li� ion jumps between two chains. To
characterize the effect of these jumps, we have first deter-
mined gM123

Li �t�, which is the MSD of a Li� ion between
times �t0 � t; t0 � t	 if at time t0 a jump happens and
during the intervals �t0 � t; t0	 and �t0; t0 � t	 the ion stays
with the same chain, respectively. The MSD is averaged
over all jumps [Fig. 3(b)]. Furthermore, we have deter-
mined the MSD gM12

Li;
�t� during the intervals �t0 � t; t0	 or
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FIG. 2. Average-square variation of the average oxygen index
of one chain to which a Li� is associated during time interval t.
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FIG. 3. (a) MSD of (i) all oxygen atoms (solid line),
(ii) oxygen atoms which are bound to one Li� during time
duration t (dashed line), and (iii) Li� which changed the average
index of its oxygen neighbors by at most 1 (dotted line). Also
shown are the Rouse predictions with �R � 19 ns (�) and �2 �
42 ns (4). (b) MSD of Li� under different constraints (see text).
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�t0; t0 � t	, i.e., just before or after an interchain jump,
respectively. For symmetry reasons, one has gM12

Li;��t� �
gM12

Li;��t� � gM12
Li �t�. If, additionally, the interchain jump at

t0 serves as a renewal process, the statistical independence
of cationic dynamics before and after the jump requires
gM123

Li �t� � gM12
Li;��t� � g

M12
Li;��t� � 2gM12

Li �t�. In the case of
correlations, a smaller factor is expected compared to 2.
As exhibited in Fig. 3(b), this relation is indeed found with
minor deviations (prefactor 2.2 instead of 2.0), thus vali-
dating the fact that interchain transitions can be regarded as
renewal processes.

In the following, we derive an explicit expression DM �
DM��1; �2; �3�. Based on the observed correlations be-
tween a Li� ion and the polymer dynamics, gM12

Li �t� can
be described by taking into account the Rouse dynamics
(M2) plus the additional intrachain diffusion (M1).
Formally, one can write

 gM12
Li �t� � h�~rj�t� � ~ri�0�	

2iM12: (3)

The average is over the probability density that the initial
oxygen index to which an ion is linked is i and at a time t
later is j and the distribution of monomer displacements as
predicted in the Rouse theory. From Ref. [15], one obtains,
using hcos2�p��j� 0:5�=N	iM1 � 1=2 and hcos�p��i�
j� 1�=N	iM1 � 0,

 gM12
Li �t� �

2R2
e

�2

XN�1

p�1

1� hcosp��i�j�N iM1 exp�� p2t
�2
�

p2 : (4)

Assuming Gaussian dynamics for (M1), i.e., h�n2i / t
(corrections to the deviation as observed in Fig. 2 can be
easily implemented but are not of relevance here), one
finds hcos�p��i� j�=N	iM1 � exp��p2t=�1�. Equa-
tion (4) simplifies to [using Eq. (2)]

 gM12
Li �t� � g�t=�12�; (5)

with 1=�12 � 1=�1 � 1=�2. Thus, the dynamical effects of
(M1) and (M2) appear through the resulting relaxation rate
1=�12. Finally, using the renewal property, one can write
DM � a2

M=6�3 explicitly as

 DM � hgM12
Li ���iM3=6�3; (6)

where a2
M corresponds to the average MSD between suc-

cessive interchain hopping events due to (M1) and (M2).
The average is taken over the distribution of time intervals
between these events. For the numerical analysis (see
below), we take a simple exponential distribution.

Approximate analytical expressions can be obtained by
converting the sum in Eq. (4) into an integral from 0 to 1
[15]. Then one obtains gM12

Li � 2R2
e�
�3=2

�����������
t=�12

p
for t�

�12 and gM12
Li � R2

e=3 for t �12, respectively. Inserting
these results into Eq. (6) gives

 

DM �
R2
e

6�

������������
1

�3�12

s
if �3 � �12 (7a)

�
R2
e

18�3
if �3  �12: (7b)

The scaling ofDM with �3 in Eq. (7a) is consistent with the
numerical results obtained in Ref. [13]. Equation (7a)
holds for long chains and takes into consideration the
implicit correlations of (M1) and (M2). By neglecting
these correlations, as done in Ref. [13], the term

������������
1=�12

p
���������������������������

1=�1 � 1=�2

p
would instead become

����������
1=�1

p
�

����������
1=�2

p
.

This would largely overestimate DM (for instance, in
PEO=LiBF4 by 35%) and the contribution of (M1) for
the case �3 � �12.

In contrast to the DBP model, we obtain DM / 1=�ren

only for short chains. The main conclusion, however, that
the Li� diffusion has the same temperature dependence as
the inverse Rouse time, and thus as the polymer dynamics,
remains valid because all three time scales �i have a similar
temperature dependence (data not shown).

In Table I, we have compiled �1, �2, �3, obtained from
our simulations for N � 24 and N � 48. Of major impor-
tance are their scaling properties with N. One expects
�1; �2 / N2 and �3 / N0. Considering the appropriate
number of eigenmodes, the predictions for N � 24, based
on N � 48, are given in parenthesis. The agreement is
convincing. By setting �1 ! 1, one can estimate the con-
tribution of (M1) to DM in the limit of long chains (�3 �
�12). It is as small as 12% for the present system.

Naively, one might expect that a2
M / N

0 and thus DM /
N0 for all N—see, e.g., [18]—because �M1�–�M3� are
related to local motions. Using the scaling results for the �i,
one obtains, however, DM / N0 only for long chains
(�3 � �12) whereas DM / N for short chains. The reason
is that for short chains a2

M is limited by the end-to-end
distance of the polymer which brings an N dependence.

In the present case, the crossover in DM, i.e., �3 � �12,
occurs for N � 100 (see inset in Fig. 4). It has been
speculated [18] that the emergence of the entanglement
regime (N � 75 [18,19]) leads to the crossover with an
accompanying change of cation conduction process from
polymer c.m.-dominated motion to percolation-type trans-
port [i.e., (M3)]. However, we find that it is a coincidence
that the entanglement length is similar to the crossover
length. Thus, the crossover to DM / N

0 is physically un-
related to entanglement effects.

We can predict the N dependence of DLi�N� for a large
range of N values by combining the empirical N scaling

TABLE I. The relevant time scales �i for N � 48 and N � 24
as well as a check of the scaling relations.

N �1 [ns] �2 [ns] �3 [ns]

48 150 42 110
24 34 (36) 10 (10) 90 (110)
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[20,21] (see inset in Fig. 4) of Dc:m:�N� with DM�N�. The
Rouse scaling (Dc:m: / N

�1) is known to be violated, and
substantially higher exponents (�1:5) have been reported
[20–22].

To determine DM�N�, we have used Eqs. (5) and (6) by
explicitly calculating the sum in Eq. (4). Figure 4 displays
the predicted DLi�N� along with the experimental data
from Ref. [18]. In agreement, both indicate a transition to
an N-independent regime beyond N � 100. Further in-
cluded in Fig. 4 is an estimation of DLi under the assump-
tion that no entanglement effects are present for Dc:m: by
simply extending the scaling in the Rouse regime to all N.
As expected, the large-N behavior does not depend on the
specific form of Dc:m:. However, one might speculate that
the appearance of the minimum in DM�N� is indicative of
entanglement effects.

Interestingly, within the present approach the value
of �3 can be estimated from experimental data. For
very large N � NL, one has [see Eq. (7a)] �3 �
�Nsb2=�6�DLijN�NL�	

2=��2jN�NS�, where b is the statisti-
cal segment length of the polymer, �2=�R � 2:2, and
�RjN�NS can be estimated from Dc:m: � DLijN�NS (at
some small N � NS) using the Rouse prediction. For the
experimental data in Fig. 4, this yields �3 � 80 ns. Via
NMR experiments [21], local relaxation processes may be
probed to extract information about �1.

It is likely that the identified motional mechanisms are
generally applicable to understand the ionic dynamics in
different polymer electrolytes. Furthermore, we checked
that the presence of a small fraction of ions which are,
temporarily, not bound to a polymer does not change the
value ofDM by more than 10%. Of course, corrections will
become relevant for a larger ion concentration due to their
mutual interaction. Note that our approach averages over
the different structural realizations and thus includes, e.g.,
temporary complexation of an ion by two polymer chains.

In summary, we have elucidated ion dynamics in poly-
mer electrolytes by extracting microscopic properties from

simulation and expressing them in analytical terms. This
extends previous phenomenological approaches such as
the dynamic bond-percolation model, by assigning its
key concept, i.e., the presence of renewal processes, a
specific microscopic interpretation. For long chains, the
scaling relation DLi / 1=

������������
�12�3
p

is obtained which goes
beyond the expressions from the DBP model. In any event,
for the transport of lithium ions, fast transitions of ions
between different chains are vital. Since the expression
DLi��1; �2; �3� is now available, one can estimate the pos-
sible range of ionic mobilities for linear chain polymer
electrolytes for all N.
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critical reading of the manuscript and Y. Aihara,
J. Baschnagel, O. Borodin, K. Hayamizu, and M. Ratner
for helpful correspondence.
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FIG. 4. Self-diffusivity of Li�, DLi � DM �Dc:m:, with DM
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shows DM and Dc:m: individually. DLi values obtained from
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