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The dynamics of strongly confined laser driven semiconductor quantum dots coupled to phonons is
studied theoretically by calculating the time evolution of the reduced density matrix using a numerical
path integral method. We explore the cases of long pulses, strong dot-phonon and dot-laser coupling, and
high temperatures, which, up to now, have been inaccessible. We find that the phonon-induced damping of
Rabi rotations is a nonmonotonic function of the laser field that is increasing at low fields and decreasing
at high fields. This results in a reappearance of Rabi rotations at high fields. This phenomenon is of a
general nature which occurs for all temperatures and carrier-phonon coupling strengths.
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The controlled manipulation of localized excitonic
states in semiconductor nanosize quantum dots (QD) by
using Rabi oscillations (RO) is a key ingredient in many
proposals for quantum information applications in a solid
state environment [1]. Typically RO in QDs are measured
by recording the rotation of the Bloch vector after a pulse
with given duration as a function of the pulse area (PA) [2–
5]. We shall refer to these signals as Rabi rotations (RR) to
distinguish them from the temporal evolution during the
pulse which we will call RO. In real systems the coherence
of the carrier states is destroyed leading to a damping of
RO which reflects itself in a damping of the observed RR.
This damping may be caused by different mechanisms.
Interface dots, e.g., typically exhibit a strong radiative
decay due to large dipole couplings [2,3]. Tunneling in-
duces dephasing when RR are measured in the photocur-
rent [4,6]. Also off-resonant wetting layer states may
contribute to the decay [5,6]. The coupling of phonons to
the QD provides a basic dephasing mechanism present in
any sample and all setups and thus marks a lower limit for
the decoherence [7–9]. In typical self-assembled QDs it is
indeed the elastic phonon scattering, usually referred to as
pure dephasing, which dominates the loss of coherence on
a picosecond time scale at temperatures below �100 K
[10,11].

The most widely studied model for phonon-induced
pure dephasing in strongly confined QDs accounts for
two electronic levels coupled to a laser field and to non-
interacting phonons [8–10,12]. This two-level independent
Boson model (TLIB) is a special case of a spin Boson
model. Such models often serve as prototypes for quantum
dissipative systems and thus have wide applications in
many areas of physics [13]. Quantum dissipation as de-
scribed by the TLIB reveals the genuine non-Markovian
nature of pure dephasing processes which makes these
systems attractive for studies of non-Markovian dynamics.
The non-Markovian properties of the TLIB are reflected in

many unusual dynamical features such as a nonmonotonic
temperature dependence of the initial decay which has also
been observed experimentally [10] or a phonon-induced
renormalization of the Rabi frequency [9,14]. Such fea-
tures cannot be obtained with models relying on
Markovian damping rates often used for other damping
mechanisms [5,6]. The phase sensitivity inherent in a non-
Markovian type of decoherence also opens new perspec-
tives for an external coherent control of the dephasing
[15,16] and may be used to improve general optimal con-
trol strategies [17].

Despite the simplicity of the electronic level structure,
complete solutions for the dynamics are only available in
rare cases like, e.g., the excitation by ultrafast pulse se-
quences [8]. The more general situation of arbitrarily
shaped pulses could only be treated numerically usually
involving further approximations. Examples are the per-
turbation analysis [12] or the correlation [9,15] and cumu-
lant [7] expansions. A serious disadvantage of many of
these approximations is that they only apply to weak
couplings and low temperatures.

A powerful method for studies of quantum dissipative
systems is the path integral formalism [13,18]. However,
numerical calculations of the relevant real time path inte-
grals run into the well-known problem that many paths of
nearly equal weight cancel by destructive phase interfer-
ence. A numerically accurate approach that overcomes this
problem has been developed recently [19,20]. To go be-
yond the limits of perturbative expansions, a similar algo-
rithm is used in this letter to calculate the density matrix of
a resonantly excited strongly confined QD. The method
allows us to explore the system dynamics for any carrier-
light or carrier-phonon coupling strength enabling model
studies in the highly nonperturbative regime of strong
fields and phonon couplings and high temperatures inac-
cessible up to now. Our results demonstrate a nontrivial
genuinely non-Markovian dynamics of optically excited
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QDs. The decay time of the RO turns out to be a non-
monotonic function of the applied field: it has a minimum
at some value of the field strength. When looking at the RR
signal, this leads to an interesting phenomenon: a high-
field reappearance of the RR. This novel phenomenon is a
general feature of the TLIB that occurs for all coupling
strengths and temperatures and thus may be observed in
many quantum dissipative systems.

The TLIB Hamiltonian reads in the rotating wave ap-
proximation (using Bohr units)

 H � �0j0ih0j ��xjxihxj �
X
q

���qb�q � �qbq�jxihxj

�
X
q

!qb�q bq � ��� � E��t�j0ihxj �� �E�t�jxih0j�;

(1)

where j0i is the QD ground state representing the unexcited
QD and jxi is the QD exciton state. �0 and �x denote the
corresponding energies. bq�b�q � are annihilation (creation)
operators for phonons with momentum q and frequency
!q, � describes the dipole coupling to the laser field E�t�
and �q denotes the exciton-phonon coupling. We assume
� � E�t� � 1

2 f�t�e
�i�t, where f�t� is a real envelope and �

is the laser frequency in resonance with the exciton tran-
sition, i.e. � � �x ��0 � �� with �� being the polar-
onic shift. We consider, as an example, the deformation
potential coupling to longitudinal acoustic (LA) phonons,
which is the dominant mechanism for pure dephasing in
many self-assembled QD systems [8,10].

We are interested in the reduced electronic density ma-
trix ���t� � Trph	U�t���0�U�t��1
, where the trace is taken
over the phonon states and ��0� is the initial density matrix.
The QD is initially in its ground state while the phonons are
in thermal equilibrium with a Bose distribution Nq. U�t� is
the time evolution operator of the entire system (QD and
phonons). The trace over the phonon variables is evaluated
explicitly leading to the real time path integral with the
Feynman-Vernon action [18,21]. This procedure fully ac-
counts for all deviations of the phonon system from ther-
mal equilibrium which occur as a consequence of the
driven dynamics. To perform this path integration numeri-
cally we employ a slightly modified version of the aug-
mented density matrix method [19], supplemented with the
‘‘on-fly’’ screening procedure [20]. Here we shall give a
short description of the approach; the details will be given
elsewhere. The path integral is discretized by introducing
time slices tj and the reduced density matrix is represented
as a sum over paths defined on these time slices [18,19]
with the discrete Feynman-Vernon action [19] and the
memory kernel
 

K�tn � tj� �
Z tn

tn�1

dt
Z tj

tj�1

dt0��t� t0�; tn > tj

��t� �
X
q

j�qj2	�1� 2Nq� cos�!qt� � i sin�!qt�
:

For a QD coupled to a continuum of LA phonons, K�t�
rapidly decreases with increasing t, as illustrated in Fig. 1.
Thus the system exhibits an effective memory length �m
such that K�t > �m� � 0 is a good approximation. Because
of this finite memory length the augmented density matrix
method provides an efficient recursive algorithm to calcu-
late the reduced density matrix �� [19]. Apart from discre-
tization errors one obtains numerically exact results for the
full range of model parameters. At higher T, Re�K� is
larger and the methods works even better. No numerical
difficulties were encountered but very strong fields require
smaller time slices and larger computer memory.

We have applied this procedure to GaAs prototype QDs
of spherical shape with radius r � 5 nm. The phonon
coupling has been modeled using the deformation poten-
tials as in Ref. [10]; all other material parameters are listed
in Ref. [22]. We assume a rectangular driving pulse. For
Gaussian shaped pulses the features discussed in this letter
are less pronounced but qualitatively similar. For cutoff
times beyond �m � 5 ps the results are independent of the
truncation.

Figure 2 shows the exciton occupation as a function of
time in the presence of a field with Rabi frequency f for
three values of f. We clearly see damped RO approaching
the stationary occupation 1=2 at large times. This time
dependence is qualitatively similar to results obtained
with phenomenological dampings. However, in Fig. 2 the
decay time strongly depends on f. We have extracted the
effective decay time by fitting an exponentially damped
oscillation to our numerical solution. The inset in Fig. 2
shows this decay time as a function of f demonstrating a
pronounced nonmonotonic field dependence. At smaller
fields the decay time decreases with increasing field, reach-
ing its minimum at f � 2 ps�1, while at larger fields the
decay time starts to rise. Thus, at a given time the magni-
tude of the oscillations increases with increasing field in
this regime.

Looking at the occupation at a fixed time � corresponds
to the RR scenario, where the final occupation after a pulse
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FIG. 1. Time dependence of the memory kernel K�t� for a
5 nm spherical GaAs QD at temperature T � 10 K.
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is recorded as a function of the PA f�. Such RR signals are
plotted in Fig. 3 for several pulse lengths and temperatures.
The period of the rotations evidently depends on T and the
PA as discussed previously [9,14]. For all pulse lengths the
Rabi amplitude first decreases with increasing field, similar
to earlier perturbative results [12]. However, with a further
increase of the field the oscillations reappear. This reap-
pearance takes place for all pulse lengths and at all tem-
peratures. For shorter pulses it is observed after a smaller
number of periods. For � � 1 ps the oscillations are almost
completely restored after a single period while at � �
10 ps the reappearance becomes noticeable only after
five periods. The damping of the oscillations is larger at
higher T as is intuitively expected. Nevertheless, as seen in
Fig. 3 the reappearance takes place at higher T as well but
stronger fields are needed.

To explore the strong coupling regime, Fig. 4 shows
results of a model study where the exciton-phonon cou-
pling has been increased by hand by factors of 5 and 10. We
clearly see a much more pronounced decay and reappear-
ance which for strong coupling follows an almost complete
collapse of the rotations. The coupling �q and the tem-
perature T enter many observables like, e.g., the amplitude
of the polarization after a single short pulse, only in the
combination [8]: j�qj2�1� 2Nq�, where T is contained in
the Bose function Nq. A higher T essentially implies an
effectively increased �q for such observables. Under the
present conditions the dependence on �q and T is more
involved, but comparing our results in Fig. 4 to a curve
obtained for T � 150 K with the unscaled coupling reveals
that the strong coupling limit at low T still yields a decay
and reappearance which is similar to the high T behavior of
the unscaled model.

It should be noted that the reappearance of RR in Fig. 3
is different from the collapse-and-revival phenomenon of
the time-dependent RO in the well-known Jaynes-
Cummings (JC) model of a two-level system coupled to
a single-mode quantized photon field. Unlike the JC model

which exhibits a periodical collapse-revival of RO in the
time-domain, here the RO monotonically decay at arbitrary
field strength [see Fig. 2], as expected in a quantum dis-
sipative model with a continuum of phonon modes. Instead
we observe the reappearance of RR as a function of the PA.
Moreover, the collapse of the oscillations does not repeat
periodically. After its reappearance the RR signal does not
decay again.
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FIG. 3. QD exciton occupation after excitation with a pulse of
fixed duration � as a function of pulse area calculated at three
different temperatures T and durations �.
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FIG. 4. QD exciton occupation as a function of pulse area at
T � 10 K and � � 10 ps for coupling constants �q scaled by
factors of 1, 5, and 10. Also shown is the result for the unscaled
�q at T � 150 K.
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FIG. 2. Time evolution of the QD exciton occupation at T �
100 K for selected values of the Rabi frequency f exhibiting
damped RO. Inset: effective decay time of the RO as a function
of f at two temperatures T.
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An understanding of the nonmonotonic damping is
achieved by recalling that the phonons can be regarded
as harmonic oscillators nonlinearly driven by the electronic
dynamics. The damping is dominated by the most strongly
coupled phonons which have wavelengths comparable to
the QD size [22], in our case corresponding to phonon
frequencies !ph � 2 ps�1. Obviously, the phonons are
most efficiently driven when the driving occurs in reso-
nance with the phonon frequency. It is well known that
when the pulses are shorter than !�1

ph that RR are un-
damped [8,14]. However, increasing the PA at fixed pulse
length speeds up the electronic dynamics. For PAs exceed-
ing 2� it is the Rabi period which determines the driving
time scale. Thus, even for long pulses, the regime of
dynamical decoupling is reached for sufficiently high
PAs. Since the damping of the RO is caused by the pho-
nons, the strongest damping is expected for Rabi frequen-
cies f � !ph, in agreement with our numerical findings. To
put this argument on a more quantitative footing we use the
result from perturbation theory [12]. The phonon-induced
perturbation of the exciton occupation ��xx is given by
[14]

 ��xx �
1

4

Z 1
�1

d!
R�!�

!2 S�!�; (2)

where R�!� is the spectral density of the phonon coupling
and S�!� comprises the optically controlled dynamics. The
explicit form of S in the general case can be found in
Ref. [14]. In the case of PA f� � n�, which corresponds
to the extrema of the occupation in the phonon-free dy-
namics, it is given for a rectangular pulse by

 S�!� � cos�f��
f2

4

��������
ei�!�f�� � 1

!� f
�
ei�!�f�� � 1

!� f

��������
2
: (3)

According to Eq. (2) the dephasing is determined by the
overlap between S�!� and R�!�=!2. The function
R�!�=!2 decays exponentially for !>!ph. The largest
peaks of S�!� are at ! � �f, their width is of the order of
2�=�. Thus, for fixed � the overlap in Eq. (2) decreases
rapidly when f exceeds !ph. Note, R�!� broadens with
increasing T thus explaining the T dependence in Fig. 3.

The observability of the reappearance of RR critically
depends on two conditions: (i) the electronic dynamics is
effectively restricted to a two-level system and (ii) pure
dephasing dominates the RR damping. Concerning (i), the
maximal damping is reached for Rabi frequencies f �
2 ps�1 (cf. inset in Fig. 2) corresponding to energies of
the order of 1 meV. Beyond this value the reappearance of
RR sets in. These are rather small values compared to the
energy gap between the first and higher excited levels of a
strongly confined QD, which is typically larger than sev-
eral tens of meV. Thus the assumption of an isolated two-
level system is still valid under conditions where we pre-

dict the reappearance. Concerning (ii), other dephasing
mechanisms can be largely suppressed by choosing suit-
able samples and experimental set-ups. It has been shown
by direct comparison of TLIB calculations with experi-
ments that it is indeed possible to realize a situation where
the pure dephasing model yields a quantitative description
on a ps time scale [10]. Hence our study should apply to an
experimentally reachable parameter range.

To conclude, we discussed the dynamics of a strongly
confined QD resonantly excited by external optical pulses.
The results were obtained by a numerical evaluation of the
density matrix in the path integral representation that is
nonperturbative with respect to the phonon-dot and laser-
dot coupling. For all coupling strengths and temperatures
we observe a nonmonotonic field dependence of the RO
decay time, which results in a reappearance of the RR at
strong fields. This phenomenon can be understood using a
rather general resonance argument: the decay ceases when
the Rabi frequency exceeds the width of the phonon back-
ground spectrum. This suggests that a nonmonotonic field
dependence and the related reappearance is a general
phenomenon and is expected in a wide range of quantum
dissipative systems.
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