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Using ground-state projector quantum Monte Carlo simulations in the valence-bond basis, it is
demonstrated that nonfrustrating four-spin interactions can destroy the Néel order of the two-dimensional
S � 1=2 Heisenberg antiferromagnet and drive it into a valence-bond solid (VBS) phase. Results for spin
and dimer correlations are consistent with a single continuous transition, and all data exhibit finite-size
scaling with a single set of exponents, z � 1, � � 0:78� 0:03, and � � 0:26� 0:03. The unusually large
� and an emergent U�1� symmetry, detected using VBS order parameter histograms, provide strong
evidence for a deconfined quantum critical point.
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Since the discovery in 1986 of high-Tc superconductiv-
ity in layered cuprates, quantum phase transitions in two-
dimensional (2D) antiferromagnets have formed a central
topic in condensed matter physics [1,2]. While supercon-
ductivity is induced in the CuO2 planes of the cuprates by
doping with charge carriers, other mechanisms for destroy-
ing the Néel order and stabilizing different ground states
have also been intensely investigated theoretically. Con-
siderable effort has been devoted to possible spin liquid
(‘‘RVB’’ [3] ) and valence-bond solid (VBS) states driven
by magnetic frustration [4–6]. This work has been par-
tially motivated by the hope that an understanding of
generic features of quantum phase transitions in 2D anti-
ferromagnets could shed light also on the mechanisms at
work in the cuprates [7]. Quantum fluctuation driven phase
transitions are also of broader relevance in the context of
strongly correlated systems [8].

A quantum phase transition occurs as a function of some
parameter at temperature T � 0 and corresponds to a T >
0 transition in an effective classical system with an
imaginary-time dimension—the path integral [9]. The
standard Landau-Ginzburg-Wilson framework for critical
phenomena should thus be applicable, with the dimension-
ality d! d� z, where the dynamic exponent z depends on
the way space and time correlations are related. In the
paradigm prevailing until recently, the ‘‘Landau rules’’
for the nature of the transition—continuous or first or-
der—were also assumed to remain valid for quantum
phase transitions. A direct transition between two ordered
phases should thus be generically first order if two different
symmetries are broken. This notion has recently been
challenged by Senthil et al., who argued that quantum
phase transitions separating two ordered phases can be
generically continuous, even when different symmetries
are broken [10]. This theory of ‘‘deconfined’’ quantum
critical points was first developed for the transition be-
tween an antiferromagnetic (AF) and a VBS state. Both
these states have confined S � 1 excitations—gapless
magnons and gapped ‘‘triplons’’, respectively. The critical

point is characterized by deconfined S � 1=2 spinons
coupled to an emergent U�1� gauge field [10]. In 2D the
deconfined state is unstable and exists only at a point
separating the two ordered phases. The AF and VBS order
parameters arise as a consequence of spinon confinement.
In this Letter, quantum Monte Carlo (QMC) results are
presented which support this theory.

Preceding the theory of deconfined quantum critical
points, continuous transitions between two ordered
quantum states had been suggested based on numerical
simulations [11,12]. However, in more detailed studies
following the theoretical developments it has proved diffi-
cult to confirm their existence. Instead, many studies have
pointed to weakly first-order AF-VBS transitions [13–17]
or other scenarios inconsistent with deconfined quantum
criticality [18]. To date, large-scale QMC studies of poten-
tial deconfined quantum critical points have focused on
spin (or hard-core bosonic) models with spin-anisotropic
interactions [13–16]. Frustrated SU�2� (Heisenberg) sym-
metric interactions, which cannot be studied using QMC
simulations due to the infamous ‘‘sign problem’’, have
been considered in exact diagonalization studies [19].
Because of the limitations to very small lattices, it has
not been possible to study phase transitions in detail,
however. In fact, not even the nature of the VBS state has
been completely settled in basic models such as the J1-J2

frustrated Heisenberg model [20].
Here it will be shown that the AF order of the square-

lattice Heisenberg model can be destroyed also by non-
frustrated isotropic interactions accessible to QMC simu-
lations. The following Hamiltonian will be discussed:

 H � J
X

hiji

Si � Sj �Q
X

hijkli

�Si � Sj � 1
4��Sk � Sl � 1

4�; (1)

where hiji denotes nearest-neighbor sites and hijkli refers
to the corners of a plaquette, such that ij and kl form two
parallel adjacent horizontal or vertical links. This interac-
tion contains a subset of the four-site ring exchange, and
with Q> 0 there is no QMC sign problem. Note that the
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purpose here is not to model any specific material, but
simply to construct a model system in which an AF-VBS
transition can be investigated. It will be shown below that
the ground state of the J-Q model has AF order for J=Q *

0:04 and VBS order for J=Q & 0:04.
To study the ground state of the Hamiltonian (1), an

approximation-free projector technique in the valence-
bond basis [21] is employed which is ideally suited for
multispin interactions formed out of singlet projection
operators �Si � Sj � 1

4�. Here L� L lattices with L up to
32 are considered. Larger systems may be reachable using
loop algorithms in the standard Sz basis, which have been
used for U�1� models with four-site interactions [22,23].
The valence-bond basis has its advantages, however, in-
cluding an improved estimator for the singlet-triplet gap.

Results will be presented for spin-spin (s) and dimer-
dimer (d) correlation functions,

 Cs�r� � hS�0� � S�r�i; (2)

 Cd�r� � h	S�0� � S�x̂�
	S�r� � S�r� x̂�
i; (3)

where x̂ denotes a lattice unit vector in the x direction. The
AF order parameter is the staggered magnetization, the
square of which is calculated

 M2 �
1

N

X

r
Cs�r���1�rx�ry : (4)

The VBS state can have either columnar or plaquette order,
both of which break Z4 symmetry. An important aspect of
the theory is that these order parameters should both ex-
hibit divergent fluctuations at the deconfined critical point.
Only at some length-scale diverging as a power of the
correlation length should one of them be singled out
[10]. This is analogous to the irrelevance of Z4 anisotropy
in the 3D XY model [24] and corresponds directly to the
predicted emergent U�1� symmetry. The q � ��; 0� dimer
order parameter,

 D2 �
1

N

X

r
Cd�r���1�rx ; (5)

is divergent for both columnar and plaquette VBS order
and will be studied here.

Extrapolations of the AF and VBS order parameters,
shown in Fig. 1, demonstrate that there is long-range
VBS order but no AF order at maximal four-spin interac-
tion, J=Q � 0 (note that there are still two-site interactions
present when J � 0; simulations for J < 0 are sign prob-
lematic). Also shown are results at J=Q � 0:1, where the
situation is the reverse; there is AF order but the VBS order
vanishes. Thus there is an AF-VBS transition somewhere
in the range 0< J=Q< 0:1, or there could be a region of
AF-VBS coexistence (which would be analogous to a
supersolid state). The nature of the VBS order—columnar
or plaquette—is not clear from these calculations.
However, simulations of open-boundary rectangular latti-
ces, in which a unique columnar or plaquette pattern can be
stabilized [12], indicate that columnar order is preferred.

The extrapolated VBS correlation at J=Q � 0 is D2 �
0:0024.

The deconfined theory has dynamic exponent z � 1
[10]. This exponent can be directly accessed through the
finite-size scaling of the singlet-triplet gap; �� L�z. To
demonstrate consistency with z � 1, the scaling of L� is
shown in Fig. 2 for J=Q � 0 and 0.1, as well as for J=Q �
0:04 which will be shown below to be close to criticality.
Here L� extrapolates to a nonzero value, supporting z � 1,
and at J=Q � 0 and 0.1 the behaviors are what would be
expected off criticality. The inset of Fig. 2 shows an
infinite-size extrapolation of the gap at J=Q � 0, giving
�=Q � 0:07.

Correlation lengths �s and �d for spins and dimers are
defined in the standard way as the square roots of the
second moments of the correlation functions (2) and (3).
Also useful is the Binder cumulant, defined for the spin as
qs � hM

4i=hM2i2. Finite-size scaling of these quantities is
used to extract the critical coupling and the correlation
length exponent �. To achieve good data collapse, a sub-
leading correction is also included. With g � J=Q, the
scaling ansatz is

 A�g; L� � L��1� aL�!�f	�g� gc�L1=�
; (6)

where A � �s, �d, or qs, and � � 1 for �s, �d and 0 for qs.
As seen in Fig. 3, these quantities can be scaled using gc �
0:040� 0:003 and a common � � 0:78� 0:03. In all
cases, the subleading exponent ! � 2, and the scaling is
nearly as good if ! � 2 is fixed throughout. Interestingly,
the best prefactor a is then almost equal for �s and �d, a �
8, but this may be coincidental.

Next, the correlation functions Cs;d�r� at the longest
lattice distance, r � �L=2; L=2�, are analyzed to extract
the correlation function exponent �. The expected scaling
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FIG. 1 (color online). Finite-size scaling of the squared spin
(M) and dimer (D) order parameters at J=Q � 0 and 0.1. The
curves are cubic fits. Statistical errors are much smaller than the
symbols.
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is as in Eq. (6) with � � ��1� ��. Now gc and � are kept
fixed at the values determined above. As shown in Fig. 4, a
single exponent describes both the spin and dimer data, and
in this case a subleading correction is not needed (a � 0).
The exponent, � � 0:26� 0:03, is unusually large. In the
3D O�3� universality class, describing transitions between
the AF and a featureless gapped state [1,25], � � 0:04. A
larger � for deconfined quantum criticality was argued for
on physical grounds by Senthil et al. [10]. The universality
class was argued to be that of the hedgehog suppressed
O�3� transition, for which �=� � �1� ��=2 � 0:80�
0:05 was obtained in simulations of a classical model in
[26]. This is larger than �=� � 0:63� 0:02 found here,
but on the other hand smaller lattices were used in [26] and
there may also be issues with how hedgehogs were sup-
pressed. The direct study of an actual AF-VBS transition
presented above can thus be expected to be more reliable.

It is also interesting to study the probability distribution
P�Dx;Dy� of the dimer order parameter. In the VBS phase,
one would expect this distribution to reflect the Z4 sym-
metry; i.e., for a columnar VBS there should be peaks at
Dx � 0, Dy � �D and Dx � �D, Dy � 0 (whereas a
plaquette state would give rise to peaks rotated by 45
).
It should be noted, however, that P�Dx;Dy� is a basis
dependent function. In the valence-bond simulations [21]
the order parameters used to construct P�Dx;Dy� are ma-
trix elements (with ê � x̂, ŷ),

 De �
h�bj

1
N

P
r S�r� � S�r� ê���1�re j�ai

h�bj�ai
; (7)

where j�ai, j�bi are valence-bond states generated by
operating with a high power Hn on a trial state (stochasti-
cally sampling valence-bond state evolutions). Although
P�Dx;Dy� is not a physically measurable quantity, any
symmetry detected in it should reflect an underlying sym-
metry of the projected state. Figure 5 shows a color-coded
P�Dx;Dy� histogram generated at J=Q � 0. The expected
Z4 symmetry of the VBS is not seen; instead the histogram
is ring shaped, which indicates a U�1� symmetric order
parameter. Such an emergent U�1� symmetry is in fact
predicted [10] by the deconfined theory in the VBS phase
below a length scale � which diverges faster than the VBS
correlation length; �� �ad, with a > 1. Thus, inside the
VBS phase, if the system length L� � one should expect
to find an U�1� symmetric order parameter, with the Z4

becoming relevant only for larger sizes (and then seen as
four peaks emerging in the histogram). Here, apparently,
even at J=Q � 0 the system is close enough to the critical
point for the system length (L � 32) to be less than � and,
hence, Z4 to be irrelevant. Recalling that the VBS gap is
small, �=Q � 0:07, and that �� �ad ���a, this seems
reasonable. On moving closer to the critical point,
P�Dx;Dy� smoothly evolves into a single broad peak cen-
tered at �0; 0�, as is expected for a continuous transition.
Note that the finite-size extrapolation of the order parame-
ter in Fig. 1 is not sensitive to the nature of the VBS state—
plaquette or columnar—and should give the correct mag-
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nitude of the order parameter even though no Z4 features
are yet seen in the histogram for these system sizes.

The above analysis points consistently to a deconfined
quantum critical point as the most likely scenario for the
AF-VBS transition in the J-Qmodel. One set of exponents
describes both spin and dimer correlations, the value of �
is unusually large, and there is an emergentU�1� symmetry
in the VBS order parameter. In principle, one cannot rule
out a weakly first-order transition on the basis of finite-size
data. However, although the lattice sizes used in this work
are not extremely large, it would be hard to explain why a
first-order transition should lead to the kind of scaling
observed. A narrow region of AF-VBS coexistence is
also unlikely, as there would then be two transitions and
there is no reason to expect the spin and dimer critical
exponents to be the same (in particular, the unusually large
�). It is difficult to say anything more quantitative regard-
ing a possible first-order transition or coexistence based on
the calculations presented here.

An emergent U�1� symmetry may also explain why it
has been so difficult to determine the nature of the VBS
state in the J1-J2 Heisenberg model [20]. Even if the
transition would turn out to be weakly first order in this
case [17,27], an emergent U�1� symmetry could still affect
small lattices, thus making it difficult to distinguish be-
tween columnar and plaquette VBS patterns. Emergent
U�1� symmetry may be more common than deconfined
quantum criticality and could hence affect many models
with VBS states. The high density of low-lying singlets
associated with U�1� symmetry may also affect exact
diagonalization studies [6] of level spectra.
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FIG. 5 (color online). Histogram of the dimer order parameter
for an L � 32 system at J=Q � 0. The ring shape demonstrates
an emergent U�1� symmetry, i.e., irrelevance of the Z4 anisot-
ropy of the VBS order parameter.
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