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Field-Induced Supersolid Phase in Spin-One Heisenberg Models
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We use numerical methods to demonstrate that the phase diagram of § = 1 Heisenberg models with
uniaxial anisotropy contains an extended supersolid phase. We show that this Hamiltonian is a particular
case of a more general and ubiquitous model that describes the low-energy spectrum of some isotropic and
frustrated spin-dimer systems. This result is crucial for finding a spin supersolid state in real magnets.
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Theoretical proposals [1] for studying the Bose-Einstein
condensation (BEC) with magnetic systems were followed
by a vast number of experimental works [2]. These studies
were done mainly on spin-dimer compounds. Magnetic
systems have the advantage that the magnetic field, which
plays the role of the chemical potential, can be varied
continuously over a large range of values. A natural ques-
tion that arises is whether other phases that have been
proposed for bosonic gases of atoms can be realized in
quantum magnets. The supersolid (SS) state is a prominent
and interesting example because the experimental evi-
dence for this novel phase is still inconclusive [3].

The search for the SS phase has motivated the study of
different models for hard-core bosons on frustrated lattices
[4]. These models are relevant for gases of atoms in a
periodic potential. However, the spin S = 1/2 Hamilton-
ians that are obtained from these models by applying a
Matsubara-Matsuda transformation [5] are not relevant for
real magnetic systems. What makes these models unreal-
istic for magnetic systems is the large uniaxial exchange
anisotropy. Moreover, the longitudinal and the transverse
components of the exchange interaction have opposite
signs: while the Ising interaction is antiferromagnetic
(AFM)), the transverse exchange coupling is ferromagnetic.
It is then natural and relevant to ask if a SS spin phase can
exist in a magnetic system with isotropic (Heisenberg)
interactions. In this Letter, we provide an affirmative an-
swer to this question by calculating the quantum phase
diagram of an S = 1 spin-dimer Heisenberg model. The
spin SS phase is induced by the application of a magnetic
field whose Zeeman splitting is comparable to the magni-
tude of the exchange interactions.

To understand the physical origin of the spin SS, we
shall start by considering the simplest S = 1 Hamiltonian
that contains this phase in its phase diagram. This is an § =
1-Heisenberg model with uniaxial single-ion and exchange
anisotropies on a square lattice:

Hy =7 (S8} +5{Sj +AS{S5) + D (DS = BS)), (1)

(i) i
where (i, j) indicates that i and j are nearest neighbor sites,
D is the amplitude of the single-ion anisotropy, and A
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PACS numbers: 75.10.Jm, 75.40.Mg, 75.40.Cx

determines the magnitude of the exchange uniaxial anisot-
ropy. Note that although the exchange interaction is aniso-
tropic, the longitudinal (J) and transverse (A) couplings
are both AFM (positive). Henceforth, J is set to unity and
all the parameters are expressed in units of J.

The quantum phase diagrams for the spin models con-
sidered in this Letter were obtained by using the stochastic
series expansion (SSE) quantum Monte Carlo (QMC)
method. The simulations were carried out on a square N =
L X L lattice, with 8 = L = 16 and at fixed magnetic field.
We find rapid convergence with N for the system sizes
studied (see Fig. 1). As the field, B, is varied, the ground
state of Hy goes through different phases, including spin-
gapped Ising-like (IS) ordered states and gapless
XY-ordered (XY) states. The IS phases are characterized
by long-range (staggered) diagonal order measured by the
longitudinal component of the static structure factor (SSF),

1 , )
§(q) = 3 > T ETISSD. 2)
ok

The XY phase has long-range off-diagonal ordering mea-
sured by the transverse component of the SSF,

1 .
$*(q) = NZke*’q‘<ff*fk)<S; Si ) 3
J

The XY ordering is equivalent to a Bose-Einstein conden-
sation (BEC) whose condensate fraction is equal to
S*7(Q), where Q = (7, 7) is the ordering wave vector.
The superfluid density corresponds to the spin stiffness, p;,
defined as the response of the system to a twist in the
boundary conditions. The stiffness is obtained from the
winding numbers of the world lines (W, and W) in the x
and y directions: p; = (W? + W2)/2.

The IS (XY) phase is marked by a diverging value of
§%(Q) « N [ST7(Q) « N] in the thermodynamic limit
N — oo, In addition, p, vanishes in the gapped IS phase
while it is finite in the gapless XY phase. A spin SS phase is
characterized by a finite value of both S%3(Q)/N and p, [6].
Both quantities are always finite for finite-size systems and
estimates for N — oo are obtained from finite-size scaling.
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FIG. 1 (color online). Quantum phase diagram of Hy [Eq. (1)]
for D = 1.5 and A = 1.8. (a) Magnetization as a function of
field B. The SS phase appears between the two Ising (or solid)
orderings denoted by IS1 and IS2. At higher fields, there is a first
order transition between the IS2 and the pure XY-AFM phases.
(b) Square of the XY-AFM order parameter as a function of B.
The inset shows the finite-size scaling of the quantity for two
representative points in the SS (B =5.7) and IS2 (B = 7.0)
phases. (c), (d) Longitudinal component of the staggered SSF
and stiffness as a function of the magnetization. In a grand
canonical ensemble, no ground state with 0.5 <m, < 0.59
(marked PS) is realized—this corresponds to the discontinuous
IS2-XY transition. For a canonical ensemble with magnetization
in this range, the ground state phase separates into spatial
domains with m, = 0.5 and m, =~ 0.59. (e¢) Full momentum
distribution of the form factor, S™(q). The peak at ¢ = Q in
addition to the one at ¢ = 0 indicate that the off-diagonal order
is modulated by the presence of simultaneous long-range diago-
nal order.

Figure 1 shows the quantum phase diagram as a function
of magnetic field, B, for D = 1.5 and A = 1.8. §%(Q) and
p, are plotted as a function of the resulting magnetization
m,. The m (B) curve features two prominent plateaus
corresponding to different IS phases. For small B, the
ground state is a gapped AFM solid (IS1) with no net
magnetization. The stiffness, p,, and S*(Q) vanish in
the thermodynamic limit, while S$%(Q)/N is slightly
smaller than 1 because the spins are mainly in the S =
*1 states depending on to which sublattice they belong.
The magnetization stays zero up to the critical field, B,
that marks a second order BEC quantum phase transition
(QPT) to a state with a finite fraction of spins in the S = 0
state. This state has a finite S%(Q)/N as well as finite p,

and ST7(Q)/N, i.e., SS order. The diagonal order results
from the S = =1 sublattices while the off-diagonal order
arises out of a BEC of the flipped spins (5 = 0 “parti-
cles’’). The magnetization increases continuously up to
B = 6.4, where there is a second BEC-QPT to a second
Ising-like state (IS2) where all the S; = —1 have been
flipped to the S; = 0 state. $%(Q)/N remains divergent
for N — oo, but the stiffness, p,, and condensate fraction,
S*7(Q), drop to zero. The ground state remains in the 1S2
phase for 6.4 =< B < 7.2. Upon further increasing the field,
there is a first order transition to a pure XY-AFM phase (m,
changes discontinuously from m, = 0.5 to m, = 0.59). In
the grand canonical ensemble, no ground state with any
intermediate value of the magnetization is realized. For a
canonical ensemble with a fixed magnetization —0.6 <
m, < —0.5, the ground state will phase separate into 1S2
and XY regions with m, = 0.5 and m, = 0.59. In the pure
XY phase, the diagonal order vanishes while p, and
S*7(Q)/N remain finite. This situation persists until all
the spins have flipped to the $? = 1 (fully polarized) state.

Further insight into the SS phase is obtained from the
momentum dependence of S~ (q) [Fig. 1(e)]. The peaks at
q = (0,0) and q = Q indicate that the off-diagonal long-
range order is modulated by the presence of solid order.
This confirms that the SF component of the SS phase re-
sults from a BEC of S§ = 0 spin states that occupy the §* =
—1 sublattice with higher probability. This feature distin-
guishes the SS phase from a uniform canted AFM phase.

For smaller values of A(<D), the second magnetization
plateau disappears completely (Fig. 2) leaving a second
order transition from the SS to the XY phase. The extent of
the SS phase decreases with decreasing A and vanishes for
A=1.

We shall now discuss the relevance of these results for
finding a SS phase in real magnets. We note that although a
U(1) invariant model provides a good description of spin
compounds whose anisotropy terms are very small com-
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FIG. 2 (color online). Same as Fig. 1, but with parameters D =
1.5, A = 1.2. The second magnetization plateau disappears com-
pletely. Instead, there is a direct (continuous) SS-XY transition.
At high fields, there is a transition to a fully polarized state (PL).
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pared to the Heisenberg interactions, this invariance is
never perfect. The transition metal magnetic ions belong
to this class because the spin-orbit interaction is much
smaller than the crystal field splitting. These spin systems
have small exchange anisotropies for the same reason.
Therefore, models that assume opposite signs for J, and
J [4] or large values of J, /J, [7] are not directly appli-
cable to these spin compounds. We will show below that it
is not necessary to assume a strong uniaxial exchange
anisotropy for obtaining a SS phase.

The system to be considered is a square lattice of § = 1
dimers (Fig. 3) which only includes isotropic (Heisenberg)
AFM interactions, an intradimer exchange J,, and inter-
dimer frustrated couplings J, and J,:

Hp = JOZSI+ Si- +J3 Z Sia - 'a

ija
+ J2 Z Sia * de - BZSIZO(
i,j)a ia
The index @ = = denotes the two spins on each dimer. The
single dimer spectrum consists of a singlet, a triplet, and a
quintuplet (see Fig. 3). The singlet-triplet energy differ-
ence is Jy, while the triplet-quintuplet is 2.J,.

For J,, J, < Jy, the low-energy subspace of Hp consists
of the singlet, the S = 1 triplet, and the S° = 2 quintuplet
(see Fig. 3). The low-energy effective model, H, that
results from restricting H, to this subspace is conveniently
expressed in terms of semi-hard-core bosonic operators, g;L
and g;, that satisfy the exclusion condition g;r =0 (no
more than two per site) [8,9] and obey the commutation
relations of canonical bosons except for the commutator
[gi g}] = 6;;(1 — nmy) (n; = g;rgi is the number operator).
The expression of H in terms of these operators is

“4)

H = —Z(gl gj+ glg)(hy + hy + h3) = MZ"
<1J

2 Zn (n; — 1) + VZ(”I D(n; — 1)
8)

—2)(ni5 — 3),

(&)

with hl = tl(nij h2 = 2t2(nij - 1) X
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FIG. 3 (color online). Square lattice of S = 1 dimers with an
intradimer Heisenberg AFM interaction J, and interdimer inter-
actions J; and J,. The left side shows the low-energy subspace of
the single dimer spectrum in the presence of a magnetic field.

(3 - nij)’ h3 = t3(”ij - l)(nlJ - 2), and nij = nj + I’lj.
The amplitudes #, ,, and #3 correspond to single-particle
hopping terms when there are one, two, or three particles,
respectively, on the corresponding bond (i, j). The case
t) =t, =13 =1t corresponds to the bosonic Hubbard
model with n.n. repulsion [10] in a truncated Hilbert space.
Our § = 1 Heisenberg Hamiltonian with uniaxial anisot-
ropy, Hy, is obtained for U =D, V= AJ, u =D + B,
and t; = V2J/2i/% with j = 1, 2, 3 after we map on each
site the eigenstates of S§ onto the eigenstates of n;: Sf =
ny — 1, and Sl+ = gl-r[\/i + (1 - \/E)I’li].

As we mentioned before, H also describes the low-
energy spectrum of Hp. In this case, we have U = J, V =
(i +1)/2, mw=B—Jy—z(J; +J,)/2, and t;=
8al(J, — J,)/3+/3 with a = /3/2, after mapping the ei-
genstates of S, + S;_ into the eigenstates of n; by the
simple relations: n; = S, + Si_ (see Fig. 3) and g{ =

(SJr -8 )[ s+ (1 - 2—‘{/_35)Sf] Figure 4 shows the
quantum phase dlagram as a function of u (or B) for U =
30.0 and V = 7.0 [(J; — J,)/2 is the unit of energy]. This
set of parameters corresponds to J, = 30, J; = 8, and
J, = 6 that satisfies the conditions J, > z(J; + J,)/2 and
Jo > z(J; — J,)/2 necessary for the validity of H as a
low-energy effective model for Hp.

At small w or B, the empty state (all the dimers in a
singlet state) has the lowest energy. For u > . (B > By)
a finite density of bosons (triplets) is stabilized in the
ground state giving rise to a BEC (XY-AFM ordering) at
T = 0 with a finite the stiffness p,. The absence of solid
(Ising) ordering is indicated by S%(Q)/N — 0. The density
(magnetization) increases monotonically as a function of u
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FIG. 4 (color online). Quantum phase diagram of H (5) for
U = 30.0, V = 17.0. (a) Particle density n or m, as a function of
the chemical potential u (lower axis) or field B (upper axis).
(b) Condensate fraction or square of the AFM-XY order parame-
ter. (c), (d) The staggered SSF and stiffness as a function of n =
m,. The range of densities marked PS is inaccessible in the grand
canonical ensemble and would result in a phase separated state
in a canonical ensemble.
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or B until u = u, = 2.9, where there is a discontinuous
transition to a charge-density wave (CDW) or Ising-like
phase with n = m, = 0.5 (the dimers of one sublattice are
in a triplet state while the other dimers remain in the singlet
state). For u > u. ~ 23.4, some of the dimers of the
singlet sublattice are turned into triplets that propagate
primarily on the singlet sublattice (U = zV where z = 4
is the coordination number). Consequently, there is a BEC-
QPT [broken U(1) symmetry under rotations around the z
axis] in D = d + 2 dimensions to a SS phase, where d is
the spatial dimensionality. The diagonal or solid order
disappears at an Ising-like quantum critical point in D =
d + 1 dimensions for u = u. = 25.4 (broken Z, sym-
metry of translation by one lattice parameter followed by a
7 rotation around the z axis). Upon further increase in u,
the filling increases monotonically in the resulting SF
phase until the ground state enters a Mott insulating (MI)
phase with all the dimers in the triplet state.

The mechanism for the formation of the SS phase is
explained most readily in the bosonic language [10]. In the
strong coupling limit (U, V > f), the half-filled ground
state (n = %) is a checkerboard solid (one sublattice is
single occupied while the other sublattice is empty).
Doping away from n =} results in different scenarios
depending on the nature of doping and the relation between
the coupling constants U and V. Extracting bosons from
the n = 1/2 crystal costs chemical potential x but no
potential energy. The kinetic energy gain of the resulting
holes is quadratic in ¢ for isolated holes [O(¢*/V)], but
becomes linear in t if the holes segregate in a SF bubble.
Consequently, if the total density is fixed, the system
separates in a commensurate crystal with n = 1/2 and a
uniform SF region with n < 1/2. This implies a first order
transition between the solid and the SF phases as a function
of u (see Figs. 1 and 4).

Doping of the n = 1/2 crystal with additional bosons
works differently depending on the relation between V and
U. The energy cost to place a boson at an empty (occupied)
site is Ey =zV — pu (Ey = U — w). Respectively, for
U > 7V, the additional bosons fill empty sites and mask
the checkerboard modulation; for U — zV > |¢| the situ-
ation is precisely particle-hole conjugate to hole doping. In
particular, in the hard-core limit U — oo, the crystalline
order is always unstable for n # 1/2. However, for zV ~
U, the bosons can be placed on either an occupied or
unoccupied site. The kinetic energy gain of the added
boson is now linear in ¢ because the potential barrier, |7V —
U/, for moving the bosons to nearest neighbors is not much
bigger than ¢. As aresult, the added bosons form a SF phase
on top of the density wave background and hence the
ground state has simultaneous solid and SF orders. This
SS phase is stable for a sufficiently small concentration of
added bosons. This is confirmed by the quantum phase
diagram shown in Fig. 4 where the SS phase appears right
next to the n = 1/2 CDW. We emphasize that this phase
requires to have two bosons on the same site, which is not

possible for hard-core bosons (or, equivalently, for S =
spins).

Finally, we note that the hopping term of H becomes
negative for J, > J;. If we now consider the Hamiltonian
H), for a triangular lattice of S = 1/2 dimers (instead of a
square lattice S = 1 dimers) in the limit J, < Jy, J5, the
resulting low-energy effective model is a ¢+ — V Hamilton-
ian for hard-core bosons on a triangular lattice, where t =
Jy—J2)/2, V=, +J,)/2, and u = —J, + B. This
model contains a SS phase in its quantum phase diagram
for t <0 and V > [t] [4], which implies that the triangular
lattice of S = 1/2 (or S = 1) dimers with frustrated (J;
and J,) interdimer couplings provides an alternative real-
ization of a spin SS.

In summary, we have shown that simple two-
dimensional S = 1 Heisenberg models have a spin SS
ground state induced by magnetic field. The physical
mechanism that leads to this phase does not depend on
the dimensionality and similar results are expected for
three- and one-dimensional lattices [11,12]. These results
provide the required guidance for finding this novel phase
in real spin systems. The crucial ingredients for the de-
scribed mechanism are dimerized spin structures and frus-
trated interdimer couplings.
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