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We use numerical methods to demonstrate that the phase diagram of S � 1 Heisenberg models with
uniaxial anisotropy contains an extended supersolid phase. We show that this Hamiltonian is a particular
case of a more general and ubiquitous model that describes the low-energy spectrum of some isotropic and
frustrated spin-dimer systems. This result is crucial for finding a spin supersolid state in real magnets.

DOI: 10.1103/PhysRevLett.98.227201 PACS numbers: 75.10.Jm, 75.40.Mg, 75.40.Cx

Theoretical proposals [1] for studying the Bose-Einstein
condensation (BEC) with magnetic systems were followed
by a vast number of experimental works [2]. These studies
were done mainly on spin-dimer compounds. Magnetic
systems have the advantage that the magnetic field, which
plays the role of the chemical potential, can be varied
continuously over a large range of values. A natural ques-
tion that arises is whether other phases that have been
proposed for bosonic gases of atoms can be realized in
quantum magnets. The supersolid (SS) state is a prominent
and interesting example because the experimental evi-
dence for this novel phase is still inconclusive [3].

The search for the SS phase has motivated the study of
different models for hard-core bosons on frustrated lattices
[4]. These models are relevant for gases of atoms in a
periodic potential. However, the spin S � 1=2 Hamilton-
ians that are obtained from these models by applying a
Matsubara-Matsuda transformation [5] are not relevant for
real magnetic systems. What makes these models unreal-
istic for magnetic systems is the large uniaxial exchange
anisotropy. Moreover, the longitudinal and the transverse
components of the exchange interaction have opposite
signs: while the Ising interaction is antiferromagnetic
(AFM), the transverse exchange coupling is ferromagnetic.
It is then natural and relevant to ask if a SS spin phase can
exist in a magnetic system with isotropic (Heisenberg)
interactions. In this Letter, we provide an affirmative an-
swer to this question by calculating the quantum phase
diagram of an S � 1 spin-dimer Heisenberg model. The
spin SS phase is induced by the application of a magnetic
field whose Zeeman splitting is comparable to the magni-
tude of the exchange interactions.

To understand the physical origin of the spin SS, we
shall start by considering the simplest S � 1 Hamiltonian
that contains this phase in its phase diagram. This is an S �
1-Heisenberg model with uniaxial single-ion and exchange
anisotropies on a square lattice:
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where hi; ji indicates that i and j are nearest neighbor sites,
D is the amplitude of the single-ion anisotropy, and �

determines the magnitude of the exchange uniaxial anisot-
ropy. Note that although the exchange interaction is aniso-
tropic, the longitudinal (J) and transverse (�) couplings
are both AFM (positive). Henceforth, J is set to unity and
all the parameters are expressed in units of J.

The quantum phase diagrams for the spin models con-
sidered in this Letter were obtained by using the stochastic
series expansion (SSE) quantum Monte Carlo (QMC)
method. The simulations were carried out on a square N �
L� L lattice, with 8 � L � 16 and at fixed magnetic field.
We find rapid convergence with N for the system sizes
studied (see Fig. 1). As the field, B, is varied, the ground
state of HH goes through different phases, including spin-
gapped Ising-like (IS) ordered states and gapless
XY-ordered (XY) states. The IS phases are characterized
by long-range (staggered) diagonal order measured by the
longitudinal component of the static structure factor (SSF),
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The XY phase has long-range off-diagonal ordering mea-
sured by the transverse component of the SSF,
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The XY ordering is equivalent to a Bose-Einstein conden-
sation (BEC) whose condensate fraction is equal to
S���Q�, where Q � ��;�� is the ordering wave vector.
The superfluid density corresponds to the spin stiffness, �s,
defined as the response of the system to a twist in the
boundary conditions. The stiffness is obtained from the
winding numbers of the world lines (Wx and Wy) in the x
and y directions: �s � hW2

x �W
2
y i=2�.

The IS (XY) phase is marked by a diverging value of
Szz�Q� / N [S���Q� / N] in the thermodynamic limit
N ! 1. In addition, �s vanishes in the gapped IS phase
while it is finite in the gapless XY phase. A spin SS phase is
characterized by a finite value of both Szz�Q�=N and �s [6].
Both quantities are always finite for finite-size systems and
estimates for N ! 1 are obtained from finite-size scaling.
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Figure 1 shows the quantum phase diagram as a function
of magnetic field, B, for D � 1:5 and � � 1:8. Szz�Q� and
�s are plotted as a function of the resulting magnetization
mz. The mz�B� curve features two prominent plateaus
corresponding to different IS phases. For small B, the
ground state is a gapped AFM solid (IS1) with no net
magnetization. The stiffness, �s, and S���Q� vanish in
the thermodynamic limit, while Szz�Q�=N is slightly
smaller than 1 because the spins are mainly in the Szi �
	1 states depending on to which sublattice they belong.
The magnetization stays zero up to the critical field, Bc1,
that marks a second order BEC quantum phase transition
(QPT) to a state with a finite fraction of spins in the Szi � 0
state. This state has a finite Szz�Q�=N as well as finite �s

and S���Q�=N, i.e., SS order. The diagonal order results
from the Szi � 	1 sublattices while the off-diagonal order
arises out of a BEC of the flipped spins (Sz � 0 ‘‘parti-
cles’’). The magnetization increases continuously up to
B 
 6:4, where there is a second BEC-QPT to a second
Ising-like state (IS2) where all the Szi � �1 have been
flipped to the Szi � 0 state. Szz�Q�=N remains divergent
for N ! 1, but the stiffness, �s, and condensate fraction,
S���Q�, drop to zero. The ground state remains in the IS2
phase for 6:4 & B & 7:2. Upon further increasing the field,
there is a first order transition to a pure XY-AFM phase (mz
changes discontinuously from mz � 0:5 to mz 
 0:59). In
the grand canonical ensemble, no ground state with any
intermediate value of the magnetization is realized. For a
canonical ensemble with a fixed magnetization �0:6<
mz <�0:5, the ground state will phase separate into IS2
and XY regions with mz � 0:5 and mz � 0:59. In the pure
XY phase, the diagonal order vanishes while �s and
S���Q�=N remain finite. This situation persists until all
the spins have flipped to the Szi � 1 (fully polarized) state.

Further insight into the SS phase is obtained from the
momentum dependence of S���q� [Fig. 1(e)]. The peaks at
q � �0; 0� and q � Q indicate that the off-diagonal long-
range order is modulated by the presence of solid order.
This confirms that the SF component of the SS phase re-
sults from a BEC of Szi�0 spin states that occupy the Sz �
�1 sublattice with higher probability. This feature distin-
guishes the SS phase from a uniform canted AFM phase.

For smaller values of ��<D�, the second magnetization
plateau disappears completely (Fig. 2) leaving a second
order transition from the SS to the XY phase. The extent of
the SS phase decreases with decreasing � and vanishes for
� 
 1.

We shall now discuss the relevance of these results for
finding a SS phase in real magnets. We note that although a
U(1) invariant model provides a good description of spin
compounds whose anisotropy terms are very small com-
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FIG. 2 (color online). Same as Fig. 1, but with parameters D �
1:5, � � 1:2. The second magnetization plateau disappears com-
pletely. Instead, there is a direct (continuous) SS-XY transition.
At high fields, there is a transition to a fully polarized state (PL).
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FIG. 1 (color online). Quantum phase diagram of HH [Eq. (1)]
for D � 1:5 and � � 1:8. (a) Magnetization as a function of
field B. The SS phase appears between the two Ising (or solid)
orderings denoted by IS1 and IS2. At higher fields, there is a first
order transition between the IS2 and the pure XY-AFM phases.
(b) Square of the XY-AFM order parameter as a function of B.
The inset shows the finite-size scaling of the quantity for two
representative points in the SS (B � 5:7) and IS2 (B � 7:0)
phases. (c), (d) Longitudinal component of the staggered SSF
and stiffness as a function of the magnetization. In a grand
canonical ensemble, no ground state with 0:5<mz & 0:59
(marked PS) is realized—this corresponds to the discontinuous
IS2-XY transition. For a canonical ensemble with magnetization
in this range, the ground state phase separates into spatial
domains with mz � 0:5 and mz 
 0:59. (e) Full momentum
distribution of the form factor, S���q�. The peak at q � Q in
addition to the one at q � 0 indicate that the off-diagonal order
is modulated by the presence of simultaneous long-range diago-
nal order.
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pared to the Heisenberg interactions, this invariance is
never perfect. The transition metal magnetic ions belong
to this class because the spin-orbit interaction is much
smaller than the crystal field splitting. These spin systems
have small exchange anisotropies for the same reason.
Therefore, models that assume opposite signs for Jz and
J? [4] or large values of J?=Jz [7] are not directly appli-
cable to these spin compounds. We will show below that it
is not necessary to assume a strong uniaxial exchange
anisotropy for obtaining a SS phase.

The system to be considered is a square lattice of S � 1
dimers (Fig. 3) which only includes isotropic (Heisenberg)
AFM interactions, an intradimer exchange J0, and inter-
dimer frustrated couplings J1 and J2:
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X
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X
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The index� � 	 denotes the two spins on each dimer. The
single dimer spectrum consists of a singlet, a triplet, and a
quintuplet (see Fig. 3). The singlet-triplet energy differ-
ence is J0, while the triplet-quintuplet is 2J0.

For J1, J2 � J0, the low-energy subspace ofHD consists
of the singlet, the Sz � 1 triplet, and the Sz � 2 quintuplet
(see Fig. 3). The low-energy effective model, H, that
results from restricting HD to this subspace is conveniently
expressed in terms of semi-hard-core bosonic operators, gyi
and gi, that satisfy the exclusion condition gy3

i � 0 (no
more than two per site) [8,9] and obey the commutation
relations of canonical bosons except for the commutator
�gi; g

y
j  � �i;j�1� ni� (ni � gyi gi is the number operator).

The expression of H in terms of these operators is
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with h1 � t1�nij � 2��nij � 3�, h2 � 2t2�nij � 1��

�3� nij�, h3 � t3�nij � 1��nij � 2�, and nij � ni � nj.
The amplitudes t1, t2, and t3 correspond to single-particle
hopping terms when there are one, two, or three particles,
respectively, on the corresponding bond hi; ji. The case
t1 � t2 � t3 � t corresponds to the bosonic Hubbard
model with n.n. repulsion [10] in a truncated Hilbert space.
Our S � 1 Heisenberg Hamiltonian with uniaxial anisot-
ropy, HH, is obtained for U � D, V � �J, � � D� B,
and tj �

���
2
p
J=2j=2 with j � 1, 2, 3 after we map on each

site the eigenstates of Szi onto the eigenstates of ni: S
z
i �

ni � 1, and S�i � gyi �
���
2
p
� �1�

���
2
p
�ni.

As we mentioned before, H also describes the low-
energy spectrum ofHD. In this case, we have U � J0, V �
�J1 � J2�=2, � � B� J0 � z�J1 � J2�=2, and tj �
8aj�J1 � J2�=3
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quantum phase diagram as a function of � (or B) for U �
30:0 and V � 7:0 [�J1 � J2�=2 is the unit of energy]. This
set of parameters corresponds to J0 � 30, J1 � 8, and
J2 � 6 that satisfies the conditions J0 > z�J1 � J2�=2 and
J0 � z�J1 � J2�=2 necessary for the validity of H as a
low-energy effective model for HD.

At small � or B, the empty state (all the dimers in a
singlet state) has the lowest energy. For�>�c1 (B> Bc1)
a finite density of bosons (triplets) is stabilized in the
ground state giving rise to a BEC (XY-AFM ordering) at
T � 0 with a finite the stiffness �s. The absence of solid
(Ising) ordering is indicated by Szz�Q�=N ! 0. The density
(magnetization) increases monotonically as a function of�
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FIG. 3 (color online). Square lattice of S � 1 dimers with an
intradimer Heisenberg AFM interaction J0 and interdimer inter-
actions J1 and J2. The left side shows the low-energy subspace of
the single dimer spectrum in the presence of a magnetic field.
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FIG. 4 (color online). Quantum phase diagram of H (5) for
U � 30:0, V � 7:0. (a) Particle density n or mz as a function of
the chemical potential � (lower axis) or field B (upper axis).
(b) Condensate fraction or square of the AFM-XY order parame-
ter. (c), (d) The staggered SSF and stiffness as a function of n �
mz. The range of densities marked PS is inaccessible in the grand
canonical ensemble and would result in a phase separated state
in a canonical ensemble.
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or B until � � �c2 
 2:9, where there is a discontinuous
transition to a charge-density wave (CDW) or Ising-like
phase with n � mz � 0:5 (the dimers of one sublattice are
in a triplet state while the other dimers remain in the singlet
state). For �>�c3 � 23:4, some of the dimers of the
singlet sublattice are turned into triplets that propagate
primarily on the singlet sublattice (U * zV where z � 4
is the coordination number). Consequently, there is a BEC-
QPT [broken U(1) symmetry under rotations around the z
axis] in D � d� 2 dimensions to a SS phase, where d is
the spatial dimensionality. The diagonal or solid order
disappears at an Ising-like quantum critical point in D �
d� 1 dimensions for � � �c4 
 25:4 (broken Z2 sym-
metry of translation by one lattice parameter followed by a
� rotation around the z axis). Upon further increase in �,
the filling increases monotonically in the resulting SF
phase until the ground state enters a Mott insulating (MI)
phase with all the dimers in the triplet state.

The mechanism for the formation of the SS phase is
explained most readily in the bosonic language [10]. In the
strong coupling limit (U, V � t), the half-filled ground
state (n � 1

2 ) is a checkerboard solid (one sublattice is
single occupied while the other sublattice is empty).
Doping away from n � 1

2 results in different scenarios
depending on the nature of doping and the relation between
the coupling constants U and V. Extracting bosons from
the n � 1=2 crystal costs chemical potential � but no
potential energy. The kinetic energy gain of the resulting
holes is quadratic in t for isolated holes [O�t2=V�], but
becomes linear in t if the holes segregate in a SF bubble.
Consequently, if the total density is fixed, the system
separates in a commensurate crystal with n � 1=2 and a
uniform SF region with n < 1=2. This implies a first order
transition between the solid and the SF phases as a function
of � (see Figs. 1 and 4).

Doping of the n � 1=2 crystal with additional bosons
works differently depending on the relation between V and
U. The energy cost to place a boson at an empty (occupied)
site is E0 � zV �� (E1 � U ��). Respectively, for
U� zV, the additional bosons fill empty sites and mask
the checkerboard modulation; for U� zV � jtj the situ-
ation is precisely particle-hole conjugate to hole doping. In
particular, in the hard-core limit U ! 1, the crystalline
order is always unstable for n � 1=2. However, for zV �
U, the bosons can be placed on either an occupied or
unoccupied site. The kinetic energy gain of the added
boson is now linear in t because the potential barrier, jzV �
Uj, for moving the bosons to nearest neighbors is not much
bigger than t. As a result, the added bosons form a SF phase
on top of the density wave background and hence the
ground state has simultaneous solid and SF orders. This
SS phase is stable for a sufficiently small concentration of
added bosons. This is confirmed by the quantum phase
diagram shown in Fig. 4 where the SS phase appears right
next to the n � 1=2 CDW. We emphasize that this phase
requires to have two bosons on the same site, which is not

possible for hard-core bosons (or, equivalently, for S � 1
2

spins).
Finally, we note that the hopping term of H becomes

negative for J2 > J1. If we now consider the Hamiltonian
HD for a triangular lattice of S � 1=2 dimers (instead of a
square lattice S � 1 dimers) in the limit J0 � J1, J2, the
resulting low-energy effective model is a t� V Hamilton-
ian for hard-core bosons on a triangular lattice, where t �
�J1 � J2�=2, V � �J1 � J2�=2, and � � �J0 � B. This
model contains a SS phase in its quantum phase diagram
for t < 0 and V � jtj [4], which implies that the triangular
lattice of S � 1=2 (or S � 1) dimers with frustrated (J1

and J2) interdimer couplings provides an alternative real-
ization of a spin SS.

In summary, we have shown that simple two-
dimensional S � 1 Heisenberg models have a spin SS
ground state induced by magnetic field. The physical
mechanism that leads to this phase does not depend on
the dimensionality and similar results are expected for
three- and one-dimensional lattices [11,12]. These results
provide the required guidance for finding this novel phase
in real spin systems. The crucial ingredients for the de-
scribed mechanism are dimerized spin structures and frus-
trated interdimer couplings.
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