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Condensation in a Capped Capillary is a Continuous Critical Phenomenon
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We show that condensation in a capped capillary slit is a continuous interfacial critical phenomenon,
related intimately to several other surface phase transitions. In three dimensions, the adsorption and
desorption branches correspond to the unbinding of the meniscus from the cap and opening, respectively,
and are equivalent to 2D-like complete-wetting transitions. For dispersion forces, the singularities on the
two branches are distinct, owing to the different interplay of geometry and intermolecular forces. In two
dimensions we establish precise connection, or covariance, with 2D critical-wetting and wedge-filling
transitions: i.e., we establish that certain interfacial properties in very different geometries are identical.
Our predictions of universal scaling and covariance in finite capillaries are supported by extensive Ising
model simulation studies in two and three dimensions.
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Capillary condensation (CC) is central to our under-
standing of confined fluids and has received much attention
over the last few decades [1]. As is well known, vapor
confined in a slit of width L condenses at a pressure p,(L),
less than the value pg, at bulk saturation, given by the
macroscopic Kelvin equation,
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where o is the liquid-vapor surface tension and 6 the
contact angle. Studies of CC, based on Landau or modern
density functional methods, usually consider confining
walls of infinite area and assume translational invariance
parallel to these [1,2]. In this case, CC is certainly a first-
order transition and mean-field treatments yield adsorption
isotherms with a van der Waals loop. Far less attention has
been given to CC in slits of finite-depth D which are
capped at one end and open into a reservoir (see Fig. 1).
This scenario is certainly experimentally accessible and is
similar to recent analysis of adsorption on grooved and
pitted substrates [3,4]. Three numerical studies [S5—7],
restricted to complete wetting (6 = 0), have reported the
same basic finding: In a finite capillary, CC is a sharp but
continuous transition (Fig. 1) and adsorption isotherms
exhibit no van der Waals loops for any finite D (see also
[8,9]). However, the physical reason behind this striking
change and the quantitative aspects of the transition have
not been elucidated.

Here we show that CC in such capped capillaries is a
continuous interfacial critical phenomenon exhibiting ob-
servable critical singularities which are intimately related
to several other surface phase transitions. Our two main
findings are: (i) In three dimensions, adsorption and de-
sorption in a deep capillary correspond to the continuous
unbinding of the meniscus from the bottom and top, re-
spectively, and map onto two-dimensional complete wet-
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ting [10,11] with relevant scaling field Ap = p.,(L) — p.
The divergence of the average meniscus height on these
branches is described by the respective critical singularities
(€)y ~ Ap~Pa, D — {£) ~ |Ap|~Pr which are, in general
distinct. In particular, for dispersion forces, B, = i while
Bp = % implying that the adsorption (isotherm) is steeper
than the desorption. For a finite-depth capillary, the me-
niscus has large-scale fluctuations at p = p., equivalent to
those of an interface in a 2D infinite capillary with oppos-
ing walls for which there are long-standing predictions
[12-15]. (ii) In a 2D capped slit (or a 3D capillary pore),
one can proceed further and relate CC to critical-wetting
transitions occurring at 2D planar substrates [10,16]. This
precise connection is an extension of the geometrical co-
variance known for the filling of wedges [17,18], cones
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FIG. 1. Schematic cross section of a capped capillary of depth

D and width L illustrating the local interfacial height €(x). The
slit is infinitely long in the y direction. A typical adsorption
isotherm is also sketched showing the rapid but continuous rise
in the midpoint height near CC [p = p.,(L)] and the complete
wetting as saturation is approached.
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[19] and apexes [20] and implies that some (universal)
interfacial properties in very different geometries are iden-
tical. These predictions, based primarily on analysis of
interfacial Hamiltonians, are supported fully by our Ising
model simulation studies in two and three dimensions.

In an infinite capillary, the two phases, referred to as
capillary-liquid and capillary-vapor, coexist when p =
Peo(L). Any meniscus separating these phases is delocal-
ized and has large-scale fluctuations, analogous to those of
a planar interface between coexisting bulk phases, but in
one lower dimension. Now in a capped system, geometry
necessitates the formation of a meniscus whose location is
determined, in part, by the capillary thermodynamics. For
P < peo(L) the meniscus must be located near the bottom
because the capillary-liquid phase is metastable, while for
P > peo(L), the capillary-vapor is metastable and the me-
niscus must reside near the capillary opening. The funda-
mental question is, what happens to the meniscus as
P = Peo?

We first follow [6] and introduce an interfacial model
based on the local interfacial height €(x, y), where y is the
variable along the capillary. The free energy is

H[{] = oS[€] + SpV[€] + W[{]. 2

Here S is the fluid interfacial area, V the volume of liquid,
Op = pe — P, and W is the binding potential accounting
for the (dispersion) intermolecular forces. For confining
walls which are completely wet (6 = 0), one can use

W[€]—E]dd’

where A > 0 is the Hamaker constant, an energy, and r and
r’ denote points in the substrate and vapor, respectively.
The numerical prefactor is chosen so that (3) recovers the
usual binding potential per unit area W({) = A¢~? for
planar walls [10]. The model (2) describes the whole
adsorption isotherm including the CC and the complete
wetting of the entire substrate as p — p,.. The latter is not
of interest so we seek an effective Hamiltonian which will
allow us to study the CC more easily. Accordingly, we
integrate out degrees of freedom keeping only the long-
wavelength fluctuations in the meniscus height along the
capillary. Close to CC, the meniscus must be of semi-
circular cross section at local height €(y) = €(0, y) < D.
The fluctuations of the meniscus are then described by a
capillary Hamiltonian, obtained via a constrained minimi-
zation of (2). After some algebra we find [21]

Haglt01 = [ ] (5] + WanttiD)]. - @

where the capillary binding potential is
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The model is only valid near CC and does not describe the

complete wetting as p — p,. Nevertheless it describes

Weap(€: D) =

accurately the interplay of the geometry, forces, and fluc-
tuations for p = p.,, providing a more transparent view of
the interfacial behavior.

Equation. (5) is one of our central results and highlights
some intriguing properties of CC: (i) The first term, con-
jugate to €(y), is proportional to Ap = p.,(L) — p, mea-
suring the deviation from capillary coexistence. This
establishes the connection with complete-wetting phe-
nomena, in one lower dimension, with the meniscus acting
as the unbinding interface. (ii) Intermolecular forces repel
the meniscus from the capillary cap and opening. At CC,
the capillary cap wishes to be “wet” by the capillary liquid
while the capillary opening is wet by the capillary vapor.
The finite-size (FS) effects mimic therefore those of an
interface in a capillary with opposing walls that are wet by
different fluid phases [22—24]. This connection is deeper in
two dimensions as we shall see later. (iii) While the re-
pulsion from the top is similar to the planar wall [22], that
from the bottom is shorter ranged due to a geometry-
induced cancellation of intermolecular forces. This is the
reason behind the asymmetry in the adsorption isotherm
seen in numerical studies [6] and is a general feature of CC
in systems with long-ranged (dispersion) forces. For short-
ranged forces the (direct) repulsions from the top and
bottom are similar to exponential decays.

To continue, consider the critical behavior in the semi-
infinite limit D — oo. The adsorption and desorption
branches of the 3D capillary isotherm become analogous
to 2D-like complete-wetting phase transitions describing
the unbinding of the meniscus from the cap and open end,
respectively. The associated critical singularities are well
understood [11] and reflect the long-ranged forces pre-
sented in W,,(¢) and fluctuation effects associated with
the wandering of the meniscus controlled by the surface
tension term in (4). The dependence on the slit width is
significant since increasing L effectively suppresses the
role of fluctuations. For example, the entropic repulsion
from the bottom effectively adds a term < (kzT)?/oL€> to
(5). While, in principle, the asymptotic divergence of ¢ is
ultimately determined by this entropic repulsion, in prac-
tice it is irrelevant for slits more than a few angstroms in
width because the amplitude is negligible compared to that
of the long-range forces. The latter dominate for all prac-
tical purposes and we anticipate mean-field-like behavior
with (€) ~ (AL/Ap)'/*, as quoted earlier. On the desorp-
tion branch, fluctuation effects are similarly negligible,
even though they are marginal, and we predict D — (€) ~
(A/|Ap))'/3. For systems with short-ranged forces, on the
other hand, the influence of fluctuations can no longer be
neglected and both the adsorption and desorption branches
show the same critical behavior. Thus, for example, on the
adsorption branch (€) ~ (L2Ap)~'/3. All these results are
supported fully by transfer-matrix analysis of the
Hamiltonian (4).

Condensation (or rather pseudocondensation) in a 2D
capped capillary is particularly interesting. Here we focus
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solely on systems with short-ranged forces since long-
ranged forces are not pertinent for all physical scenarios.
However, we broaden our discussion to the case of nonzero
contact angle 6. First, as above, the adsorption and desorp-
tion in a semi-infinite capillary are related to the 1D limit
of complete wetting. The probability of finding the menis-
cus at a given height is simply proportional to the
Boltzmann weight of W, implying that on the adsorption
branch (€) ~ (LAp)~! and similarly for desorption. Thus
the critical exponent 84, = 1 can be identified as the d —
1" limit of the general result B5,(d) = (3 —d)/(d + 1)
appropriate to short-ranged complete wetting in dimension
d =3 [10].

To see the deep connection with 2D critical wetting we
introduce what at first appears to be an artificial geometry,
and adopt a magnetic notation also useful for comparison
with our Ising model simulation results. Consider a planar
Ising-like system, with spontaneous magnetization m, and
a boundary (wall) in the shape of a trough. That is the
height of the wall above some reference line is W(x) = 0
for |x| < L/2 and ¥(x) = (|x| — L/2) tana otherwise. The
spins on the boundary are subject to a surface field 2; > 0.
The spins away from the wall are subject to a position
dependent external field h(x) = h for |x| <L/2 and
h(x) = 0~ otherwise. In general these boundary conditions
induce a fluctuating interface at height €(x), which defines
the “wetting” layer of up spins adsorbed near the wall.

The trough has limiting geometries, each having distinct
transitions. For @ = 7, we have a capped capillary with
spins subject to bulk field # exhibiting continuous CC
when h = h.,(L) = —o cosf/(myL). In the limit L — 0
we recover a wedge, which at bulk two-phase coexistence
exhibits a 2D filling transition [17,18,25,26] when
0(Ty;) = a, whereby the thickness of the adsorbed layer
at the bottom diverges: [,, ~ (T — T)”Pv. Finally, if a,
L — 0 we recover a planar geometry with a critical tran-
sition at temperature T, at which the mean layer thick-
ness diverges: [, ~ (T — T)™#, and 6 — 0 [10].

The trough exhibits a generalized filling transition which
can be studied using the effective Hamiltonian

de\2
H.[{] = ]dx{a 1+ (E) + W, (£, x; h, a)}. (6)

The binding potential for the trough, W, has a contact
(attractive) interaction at the wall and a term 2myh{(x) for
lx| < % which models the bulklike field acting on spins in
the strip vertically above the bottom. The model is ame-
nable to transfer-matrix analysis similar to that used for
filling in acute wedges [18]. In particular, one can establish
that, for all @ = /2, close to the transition the probability
distribution function (PDF) for the midpoint (x = 0) inter-
facial height has the simple scaling form P, (¢) o« e~ ¢/,
where the mean height is given by

kyT

= 2(osin(@ — a) — mohL)’

)

This result identifies correctly the phase boundaries for
CC, filling and wetting in the limits discussed above.
When L =0, we recover the covariance between the
PDFs at 2D wedge filling and planar critical wetting writ-
ten, in an obvious notation, P, (€; 0, a) = P_({;0 — a)
[17]. The covariance of the PDF therefore extends to
2D CC and establishes a dimensional reduction between
2D critical wetting and 1D complete wetting for thermal
systems. This has a number of consequences. First, the 2D
exponents satisfy 84 = B,, = B° = 1 and are identified
with the 1D complete-wetting result 85,(1*) noted earlier.
Second, the invariance of the PDF necessarily implies that
the thermal interfacial wandering exponent ¢(d) must sat-
isfy £(2) = 1/2 and £(1") = 1. These last results are not
new but they point to a very deep connection between
substrate geometry and interfacial fluctuations which is
not yet fully explored.

Our discussion has focused so far on the critical singu-
larities in a semi-infinite capillary. Fluctuation effects and
covariances are also apparent in a capillary of finite depth,
particularly if the pressure (or bulk field for Ising systems)
is tuned to the condensation value, p = p., (L), of the
infinite capillary. Here we focus on systems with short-
ranged forces where the geometrical covariances are most
striking and we can compare with simulation studies. We
consider only the case of strongly adsorbing walls (6 = 0),
although the 2D case is insensitive to 6 and show that the
fluctuations of the meniscus in both two and three dimen-
sions capillaries are related, via geometrical covariance, to
universal FS effects in an entirely different 2D geometry.

Consider an infinitely long, 2D Ising magnet with
boundaries at z = 0, D along which the spins are subject
to fields i, and —h respectively [12]. In zero bulk field,
the lower wall is wet by up spins for T = T, while the
upper is wet by down spins. The FS effects are known to
fall into two universality classes. Exactly at the critical-
wetting temperature T = T, the profile contains a scaling
contribution [12]

m(z) —1— % (8)
my D '
while for 72U > T > T,
2 1 2
m) _ -y 2 sin<ﬂ) )
my D w D

These results are valid in the scaling limits z, D — o0 with
z/D arbitrary and are verified by exact Ising calculations
[14,15]. Both are indicative of large-scale interfacial fluc-
tuations where the roughness scales with the separation D.

Now consider the magnetization profile m(z) measured
along the central axis x = 0 of a finite-depth capped cap-
illary at bulk field tuned to condensation, i.e., h = h,(L).
If the capillary is 2D, covariance with 2D critical wetting
implies we should expect (8). In a 3D capillary, on the
other hand, transfer-matrix analysis of (4), with short-
ranged forces, leads us to the prediction (9).
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FIG. 2 (color online). Representative Monte Carlo simulation
results (points) for the midpoint magnetization profile in 2D and
3D capped capillaries compared with theoretical predictions (8)
and (9) (curves). The temperatures, T = 0.741T*% (2D) and
T = 0.830T2k, respectively, were chosen to avoid the bulk
critical region and also the roughening transition (3D).

In order to test these predictions Monte Carlo simula-
tions were performed using a Metropolis algorithm for
system sizes L = 13, D =200 (2D) and L =11, D =
88, M = 9000 (3D). The length M in the direction along
the 3D capillary is sufficiently large to preclude FS. More
quantitatively, transfer-matrix analysis shows these are

negligible if exp(— 6;(;“51)‘;1) < 1 where w is the dimension-

less wetting parameter [10] and « the inverse bulk corre-
lation length. We mimic the capillary cap geometry by
fixing all spins on all surfaces to +1 except along the top
line or plane z = D where they are fixed to —1. Periodic
boundary conditions apply (in three dimensions) along the
capillary. First we determined the CC line ., (L) for the 2D
and 3D open capillaries, where periodic boundary condi-
tions apply at the top (z = L) and bottom (z = 0), using
standard multicanonical and histogram reweighting tech-
niques. The measured form of the axial magnetization
profiles at &, are shown in Fig. 2. The comparison with
the theoretical prediction is good in both dimensions but
particularly so in two dimensions, confirming the covari-
ance with critical wetting. Residual discrepancies in the 3D
case are attributable to a failure to fully attain the scaling
limit D — oo which, in view of the requirement M > D?, is
computationally intractable.

We have shown that continuous CC is intimately related
to a number of other surface phase transitions and high-
lights the deep connection between interfacial behavior,
fluctuation effects, and substrate geometry. Our predictions
of distinct critical singularities for adsorption and desorp-
tion in deep capillaries should be verifiable in experiments
similar to those reported in [3]. Finally, we remark that the
present discussion has been largely limited (in three di-
mensions) to the most experimentally accessible case
where confining walls are completely wet (6 = 0). The
phenomenology will be significantly enriched if one con-

siders walls with nonzero contact angle since the unbind-
ing of the meniscus at CC for adsorption and/or desorption
may become first order. This intriguing possibility requires
further study.
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