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For the study of crystal formation and dynamics, we introduce a simple two-dimensional monatomic
model system with a parametrized interaction potential. We find in molecular dynamics simulations that a
surprising variety of crystals, a decagonal, and a dodecagonal quasicrystal are self-assembled. In the case
of the quasicrystals, the particles reorder by phason flips at elevated temperatures. During annealing, the
entropically stabilized decagonal quasicrystal undergoes a reversible phase transition at 65% of the
melting temperature into an approximant, which is monitored by the rotation of the de Bruijn surface in
hyperspace.
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Self-assembly is the formation of complex patterns out
of simple constituents without external interference. It is a
truly universal phenomenon, fundamental to all sciences
[1]. Although usually the constituents interact only locally,
the result is well ordered over long distances, sometimes
with a high global symmetry. In the process of crystalliza-
tion, particles (atoms, molecules, colloids, etc.) arrange
themselves to form periodic or quasiperiodic structures.
Here we are interested in structurally complex phases.
Examples are metallic crystals with large unit cells—hun-
dreds or thousands of atoms—known as complex metallic
alloys [2]. Some consequences of the complexity are the
existence of an inherent disorder and the formation of well-
defined atomic clusters [3]. Related alloys differ by the
cluster arrangement. In the limit of infinitely large unit
cells, nonperiodic order such as in quasicrystals [4] is ob-
tained. However, self-assembly of complex phases is not
unique to alloys. Recently, micellar phases of dendrimers
were observed to form a mesoscopic quasicrystal [5], and
there are indications that quasicrystals exist in monodis-
perse colloidal (macroscopic) systems [6]. Since the inter-
action between colloidal particles can be tuned in various
ways, these systems are well suited for experiments inves-
tigating self-assembly in dependence of the potential
shape.

All of the previous examples have in common that the
crystal growth can be modeled with effective pair poten-
tials, which is a prerequisite for simulating self-assembly
of a large number of particles on a computer. The first such
simulations were conducted by Lançon, Billard, and
Chaudhari in two [7] and by Dzugutov in three dimensions
[8]. In the latter work, the system was chosen monatomic
to facilitate computation and separate chemical from topo-
logical ordering. It is well known that many common pair
potentials such as the Lennard-Jones (LJ) potential favor
close-packed ground states. To force the formation of
alternative structures, the Dzugutov potential is endowed
apart from its LJ minimum with an additional maximum.
Although the potential was originally tailored to lead to a

glassy state [8], it stabilizes the � phase at a low tempera-
ture [9]. Later, similar potentials were used to demonstrate
the formation of a dodecagonal quasicrystal in two dimen-
sions [10], which on closer inspection was identified as a
periodic approximant. In fact, it is often difficult to distin-
guish quasicrystals and closely related periodic complex
crystals due to their structural similarity.

The relation between an interaction potential and its
energetic ground state is a fundamental problem of phys-
ics. It can be approached by two methods: The direct
method starts from a given parametrized set of potentials
and studies the resulting structures as a function of the
parameters (and temperature/pressure). An example is the
hard core plus linear ramp model with the ramp slope as a
single parameter [11]. The inverse method tries to find an
appropriate potential that stabilizes a given structure via
optimization [12]. It was used recently by Rechtsman,
Stillinger, and Torquato to find potentials for various latti-
ces [13]. In this Letter, we apply the direct method to a
potential of the form [12]
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which we denote the Lennard-Jones-Gauss (LJG) poten-
tial. For most values of the parameters, V�r� is a double-
well potential with the second well at position r0, depth �,
and width � (Fig. 1). We note that the general form of pair
potentials in metals consists of a strongly repulsive core
plus a decaying oscillatory (Friedel) term [14]. A LJG
potential can be understood as such an oscillatory poten-
tial, cut off after the second minimum.

In the following, the two-dimensional system is studied.
We restrict the parameter space by fixing �2 � 0:02. The
T � 0 phase diagram in the r0-� plane is determined in two
steps: First, candidate ground state structures are obtained
from annealing simulations. Next, a defect-free sample of
each candidate structure is relaxed with a conjugate gra-
dient algorithm. During the relaxation, particle movements
and adjustments of the simulation box dimensions are

PRL 98, 225505 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
1 JUNE 2007

0031-9007=07=98(22)=225505(4) 225505-1 © 2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.98.225505


allowed. The stable structures (within the candidates) are
the ones with the lowest potential energies. Simulations
were carried out by solving the equations of motion with
molecular dynamics. Periodic boundary conditions and a
Nosé-Hoover thermo-/barostat for constant temperature T
and constant pressure P � 0 were used. A cutoff was
applied to the LJG potential at r � 2:5.

We performed 5000 annealing simulations with a sam-
ple of 1024 particles using parameters located on a fine
grid: r0 2 �1:11; 2:10�, �r0 � 0:01 and � 2 �0:1; 5:0�,
�� � 0:1. During each run, the temperature was lowered
linearly over 2� 106 molecular dynamics steps starting
from the liquid state. A typical final particle configuration
consists of several well-ordered grains whose structure is
analyzed in direct and in reciprocal space. The phase
observation regions are displayed in Fig. 2. We found
hexagonal phases with a nearest-neighbor distance close
to 1.0 (Hex1) and close to r0 (Hex2), a square lattice (Sqa),
a decagonal (Dec) and a dodecagonal (Dod) quasiperiodic
random tiling (RT), a phase built from pentagons and
hexagons (Pen), a rhombic lattice (Rho), and finally a
honeycomb lattice (Hon). It can be seen in Fig. 2 that the
two hexagonal phases are connected around the phase Sqa.
Across the line between C and the phase Sqa, there is a
rapid increase in the hexagonal lattice constant.

The phases resulting from the annealing simulations are
possible energy ground states. Further possibilities are ap-
proximants, which we constructed from the tiles in Fig. 2.
The choice of approximants is restricted by the following
observations at a low temperature: (i) The D tiles have the
lowest energy, and their number is maximized (see below).
(ii) The Sh tiles and two neighboring Sq tiles are avoided.
Together, the approximants and the phases from annealing
simulations were used as initial structures for numerical
relaxation. In the phase diagram (Fig. 3), five complex
crystals are stable: the phase Pen, the decagonal approx-
imant (Xi), which is a periodic stacking involving D tiles,
and three dodecagonal approximants—the � phase (Sig1)
and two modifications (Sig2 and Sig3). Here we use the
term ‘‘complex’’ since the lattice constants are larger than

the potential cutoff, which means that the unit cells have to
be stabilized indirectly by geometric constraints. Quasi-
crystals are not energetically stable at T � 0. The phase
boundaries are slightly displaced compared to those from
annealing simulations due to metastability.

The location of the stability regions can be understood
from the near-neighbor configuration. Local n-fold order is
stabilized for r0 � 2 cos��=n�. Figure 3 confirms this ex-
cept for local fivefold order that is found at r0 � 1:47 as a
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FIG. 3 (color online). Phase diagram of the LJG potential at
T � 0 with �2 � 0:02. Four approximants have been found.
Phason flips correspond to local changes in the tilings.
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FIG. 2 (color online). Phase observation regions after anneal-
ing simulations. Tilings of the unit cells are shown. The quasi-
crystal tiles are the following: (P)entagon, (H)exagon, (N)on-
agon, (U) tile, (D)ecagon, (Sq)uare, (Tr)iangle, and (Sh)ield.
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FIG. 1 (color online). LJG potential for � � 1:1, �2 � 0:02,
and r0 � 1:3 (Hex2 in Fig. 2), 1.4 (Sqa), 1.5 (Pen), and 1.6
(Hex1).
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result of the competition with the close-packed phase
Hex1. Structure details of the complex phases are collected
in Table I: The phases Xi and Dec have a surprisingly low
density, which is only 65% of the density of Hex1. They are
locally very similar; their potential energies differ by less
than 0.7%.

We have studied the decagonal quasicrystal in longer
simulations using the parameters r0 � 1:52, � � 1:8, and
�2 � 0:02 (indicated by a cross in Fig. 2). With these
parameters, the decagonal quasicrystal is assembled with
few defects at elevated temperatures. A simulation of a
large sample, 10 000 particles, was initiated in a random
configuration at T � 0:50, which is close to the melting
point TM � 0:56	 0:02. In the following, the periodic
boundary conditions are turned off to allow phason strain
relaxation. At the beginning, the particles quickly formed
an amorphous state with local decagonal order. After about
105 molecular dynamics steps, multiple grains with the
quasicrystal started to grow. The bigger ones increased
their size until at ca. 107 steps only one single grain
remained. We continued the simulation up to 5� 107

steps, healing out point defects (vacancies, interstitials)
and improving the quasiperiodicity. At the end, the sample
was quenched to T � 0 and relaxed. The diffraction image
(Fig. 4) shows a perfect decagonal symmetry with long-
range order. There is a pattern of intrinsic diffuse scattering
due to the randomness.

In the simulation, the dynamics is dominated by particle
jumps over the short distance �r � 0:6, called phason
flips, which transform energetically comparable configu-
rations into another (see Fig. 3). Each such configuration
can be mapped to a tiling and embedded as a discrete
de Bruijn surface in a five-dimensional hypercubic lattice
by noting that the tiling vertices are integer multiples of the
five basis vectors en � � cos�2�n=5�; sin�2�n=5��.
Although the average orientation of the surface is fixed
by the decagonal symmetry, phason flips lead to local
fluctuations h?�r� in ‘‘perpendicular space’’ resulting in
a phason strain �ij � rih?j . The ensemble of all accessible
configurations forms an entropically stabilized random
tiling with a phason elastic free energy density of the
general form f�T; �� � �1�T��2

1 
 �2�T��2
2, where �2

1,
�2

2 are quadratic forms in �ij, and �1, �2 are independent
phason elastic constants [15].

According to the T � 0 phase diagram, a transformation
to the phase Xi can occur during annealing [16]. This is
achieved by (i) a collective rearrangement of the tiling
induced by a global change of the de Bruijn surface ori-
entation and (ii) a damping of the local phason fluctuations.
For (i) to happen, a huge number of phason flips is neces-
sary, which makes the transition extremely slow. We per-
formed long simulations over 109 steps with 1600 par-
ticles. At intermediate temperatures T < 0:40, a reversible
change in the tiling was found: The density of D tiles
increased, and they arranged preferably close-packed in
rhombs, characteristic for the approximant Xi. However, as

TABLE I. Structure details of the ideal tilings of the complex
crystals. For comparison, the quasicrystals are included.

Phase Density Lattice constants Atoms per unit cell

Pen 0.8981 a � 2:62, b � 2:50 5
Xi 0.7617 a � 4:24, b � 4:24 13
Dec 0.7608
Sig1 1.0718 a � 2:73, b � 2:73 8
Sig2 1.0788 a � 3:73, b � 2:73 11
Sig3 1.0829 a � 4:73, b � 2:73 14
Dod 1.0774

FIG. 4 (color online). Diffraction image of the large
10 000 particle sample with the decagonal quasicrystal.

FIG. 5 (color online). Particle configuration in the molecular
dynamics simulation at T � 0:30. The D tiles are arranged
preferably in a rhomb supertiling.
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shown in Fig. 5, some defects and stacking faults were still
present in the rhomb supertiling.

At low temperatures T < 0:30, the flip frequency was
too slow to reach equilibrium with molecular dynamics.
Hence, we turned to a Monte Carlo algorithm, which
allowed sampling the full temperature range from T �
0:5 down to zero and back up. As an elementary step, a
random displacement inside a circle of radius 0.7 was used.
The large radius allows both local relaxation and phason
flips. The squared average phason strains �2

1, �2
2 are in-

dicators of the de Bruijn surface orientation and, thus,
order parameters for the phase transition. The results in
Fig. 6 indicate a reversible order-disorder transition at
Tc � 0:37	 0:03. Above Tc, there is a strong increase in
the density of D tiles, which then slows down below Tc.
The phason strains �2

1 and �2
2 fluctuate and switch from

zero average at T > Tc to finite values including a small
hysteresis. We note that, with periodic boundary conditions
or in large samples, phason flips alone cannot change the
decagonal symmetry efficiently.

In the case of the Sig phases, phason flips are not pos-
sible. They occur only in combination with Sh tiles as
depicted in Fig. 3. Even though Sh tiles are not seen in
the ground states, they are present in equilibrium at a
higher temperature as structural defects. The flip mecha-
nism then differs from the one in the decagonal RT [17].

Finally, we comment on the value of the parameter �
and on other double-well potentials. The dynamics of the
complex phases is controlled by the potential hill between
the minima. A high potential hill leads to a low phason flip
frequency and slow phase transitions, at least in molecular
dynamics. On the other hand, a too low potential hill does
not stabilize complex phases. The phase behavior is quite
robust against small changes in the potential. Phase dia-
grams resembling Fig. 3 have been obtained for different
values of �. Choosing �2 � 0:02 constitutes a compro-
mise between high flip frequency and stability. In contrast,

the flip frequency of earlier models [7,8] is much lower.
Another example, a repulsive term plus two negative
Gaussians, has a qualitatively similar phase diagram,
although additional phases appear. Further details will be
presented elsewhere.

In conclusion, we have shown that systems with two
competing nearest-neighbor distances can have a much
more complicated phase behavior than what is known for
single minimum potentials. Quasicrystals and complex
crystals appear naturally in such systems as an attempt to
maximize local particle configurations with noncrystallo-
graphic symmetry. In the presence of phason flips, entropic
contributions to the free energy play an important role in
the thermodynamic stability.
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FIG. 6 (color online). Monte Carlo simulation of the phase
transition between the decagonal RT and the approximant Xi.
The data have been averaged over intermediate temperature
intervals. Open symbols: cooling; solid symbols: heating.
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