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(Received 4 January 2007; published 29 May 2007)

We propose a novel method to measure time-dependent linear susceptibilities in molecular simulations,
which does not require the use of nonequilibrium simulations, subtraction techniques, or fluctuation-
dissipation theorems. The main idea is an exact reformulation of linearly perturbed quantities in terms of
observables accessible in a single unperturbed trajectory. We apply these ideas to supercooled liquids in a
nonequilibrium aging regime. We show that previous work had underestimated deviations from
fluctuation-dissipation relations in the case of a Lennard-Jones system, while our results for silica are
in qualitative disagreement with earlier results.
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Correlation and response functions play a major role in
condensed matter physics as they directly probe static and
dynamic properties at a microscopic level [1]. At thermal
equilibrium, linear response theory permits the derivation
of fluctuation-dissipation relations between conjugated
susceptibilities and correlations, so that both types of
measurements become equivalent [2]. Numerical simula-
tions mainly focus on spontaneous fluctuations and probe
microscopic dynamics via correlation functions [3].
However, there exist cases where the numerical measure-
ment of response functions becomes necessary, for in-
stance when correlation functions become too noisy to be
detected [4], or in nonequilibrium situations, where corre-
lation and response functions contain distinct information
because fluctuation-dissipation theorems (FDT) do not
hold [5]. Quantifying FDT ‘‘violations’’ from the simulta-
neous measurement of correlation and response functions
is an increasingly active field of research for both experi-
ments and theory, which spreads from glassy materials to a
larger variety of complex systems; see [6] for a review.
Here we propose an efficient method to access linear
response functions in numerical simulations of molecular
systems and apply it to study response functions of glass-
forming liquids. It allows us to quantify in an unbiased way
FDT violations in aging liquids and to resolve the ‘‘para-
doxical’’ behavior reported in Ref. [7] for aging silica, the
most widely used glass former.

Direct measurements of linear susceptibilities usually
proceed as follows. Consider a system of N particles
described by coordinates, ~r � f ~ri; i � 1; � � � ; Ng, mo-
menta, ~p � f ~pi; i � 1; � � � ; Ng, masses mi, and a
Hamiltonian H � ~r; ~p� containing a kinetic part, K� ~p� �P
i ~p

2
i =�2mi�, and a potential part, V � ~r�. We first consider

Newtonian dynamics, as used in molecular dynamics
(MD):

 

_~r i � @H =@ ~pi; _~pi � �@H =@~ri: (1)

Observables, A�t� � A� ~p�t�; ~r�t��, can be measured at any
time in a simulation, and correlation functions, C�t; t0� �

hA�t�B�t0�i0, are obtained by averaging over repeated mea-
surements. The subscript ‘‘0’’ indicates averages per-
formed over unperturbed trajectories, and we suppose
hA�t�i0 � 0. In time-translationally invariant systems,
two-time quantities only depend on t� t0 but we retain
the (t, t0) notation adapted to aging systems.

To measure response functions, an external field of
constant amplitude h, conjugated to B�t�, is introduced at
time t0, such that the Hamiltonian contains the additional
term �H � �hB for t > t0. A linear susceptibility can
then be defined:

 ��t; t0� �
Z t

t0
dt00

@hA�t�ih
@h�t00�

��������h!0
: (2)

Step responses are considered for simplicity but the dis-
cussion holds more generally. The average in (2) is with the
field switched on, the zero-field limit comes from repeated
measurements with fields of decreasing amplitude. In prac-
tice, a compromise is sought between large fields introduc-
ing unwanted nonlinear effects, and small fields resulting
in poor signals. Such nonequilibrium techniques suffer
from a serious drawback. Averages in (2) are taken over
perturbed trajectories, so that susceptibilities can only be
measured one at a time, contrary to correlation functions
which can be simultaneously measured and time averaged
in a single unperturbed trajectory.

An alternative would be to perform the derivative in
Eq. (2) before taking the average. This is precisely how
the FDT is derived [2]. Averages are first expressed in
terms of the distribution function. Its thermal equilibrium
(Gibbs-Boltzmann) form at temperature T is then assumed,
and the derivative is computed analytically [2]:

 ��t; t0� �
1

T
�C�t; t� � C�t; t0��; (3)

where we have set Boltzmann’s constant to unity. An
important and well-known feature of the FDT in Eq. (3)
is that the right-hand side is evaluated using unperturbed
trajectories, the temperature prefactor reminding us that
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thermal equilibrium is assumed, implying that Eq. (3)
cannot be used to measure ��t; t0� far from equilibrium.

Here, we shall perform the derivative before doing the
average without assuming thermal equilibrium. In MD
simulations, the subtraction technique [8] is a finite-field
approximation of this idea: two simulations start from the
same configuration at time t0, one with h � 0, the other
with a small field, h. The susceptibility reads: ��t; t0� 	
�hA�t�i � hA�t�i0�=h. Nonequilibrium techniques are in fact
unnecessary [8], since the h! 0 limit can be taken directly
from (1) using perturbation theory [9] to devise an unper-
turbed technique. The quantities ~�i � @~ri=@h and ~’i �
@ ~pi=@h evolve as [9]:
 

_~�i �
~’i
mi
�
@B� ~r; ~p�
@ ~pi

;

_~’i �
@B� ~r; ~p�
@~ri

�
XN
j�1

@2V �~r�
@~ri@~rj

� ~�j:

(4)

The susceptibility ��t; t0� can now be evaluated from un-
perturbed trajectories:

 ��t; t0� �
�XN
i�1

�
@A� ~r; ~p�
@~ri

� ~�i 

@A� ~r; ~p�
@ ~pi

� ~’i

��
0
: (5)

To illustrate the result in Eq. (5) we have performed MD
simulations of a 80:20 binary Lennard-Jones (LJ) system
composed of N � 103 particles at density � � 1:2.
Particles interact with a LJ potential with parameters that
can be found in [10], chosen to avoid crystallization at low
temperature, and to study the properties of glass-forming
liquids. Technical details of our simulations are as in the
original paper [10]. When the temperature gets lower than
T 	 1 (we use LJ units [10] ), the dynamics dramatically
slows down, and the system cannot be equilibrated in
computer simulations below T 	 0:43.

We perform equilibrium simulations where we simulta-
neously solve (1) and (4) to evaluate ��t; t0� from (5),
and the correlation C�t; t0�. We focus on the following
observables: A�t� � N�1P

j�j exp�i ~k � ~rj�t�� and B�t� �

2
P
j�j cos� ~k � ~rj�t��, where �j � �1 is a bimodal random

variable of mean 0 [2], such that C�t; t0� corresponds to the
self-intermediate scattering function [2]. For T � 1:0, dy-
namics is fast and ��t; t0� can be evaluated in a few runs, as
can be checked using the FDT. For T � 0:75, where the
relaxation time is	 50 (see inset of Fig. 1), a fundamental
limitation appears. In Fig. 1 we represent T��t; t0� eval-
uated from 103 independent runs using (5), as a function of
C�t; t0�. FDT predicts the linear relation shown as a full
line. For t� t0 & 5, ��t; t0� follows the FDT. For larger t�
t0, the noise in the susceptibility diverges exponentially
(due to the chaotic nature of trajectories) and no reliable
measurement can be performed, just as in subtraction
techniques. No-field methods are therefore of little use in
MD simulations of supercooled liquids where large times
are needed.

The above exercise suggests that in Monte Carlo (MC)
simulations, where phase space is sampled probabilisti-
cally rather than deterministically, response functions
could be efficiently evaluated. Similar ideas were recently
discussed for discrete spins [11]. In a standard MC simu-
lation [3], a configuration Ct is reached at time t. A trial
configuration C0t is accessed with acceptance rate ACt!C0t

,
generally defined from the energy change between the two
configurations. Here we use the standard strategy of local
and sequential moves of individual particles, which are
accepted according to the Metropolis acceptance rate [3].
The transition probability from Ct to Ct
1 reads:
WCt!Ct
1

��Ct
1;C0tACt!C0t

�Ct
1;Ct�1�ACt!C0t

�. Averages
now mean sampling a large number N of trajectories,
hA�t�B�t0�i0 �N �1 PN

k�1 Ak�t�Bk�t
0�Pk�t0 ! t�, where

Ak�t� is the value of A at time t in trajectory k, and Pk�t!
t0� is the probability of trajectory k between times t0 and
t starting from Ct0 , Pk�t0 ! t� �

Qt�1
t00�t0 WCk

t00
!Ck

t00
1
,

where Ckt00 is the configuration visited at time t00 in trajectory
k. The susceptibility reads ��t; t0� � @hhA�t�i �
@h�N

�1P
kAk�t�Pk�t

0 ! t��. Applying an infinitesimal
field simply modifies the acceptance rates, and therefore
the transition probabilities WCt!Ct
1

, so that the derivative
@h only acts on Pk�t0 ! t�. We find

 @hPk�t
0 ! t� � Pk�t

0 ! t�
Xt�1

t00�t0

@h�WCt00!Ct00
1
�

WCt00!Ct00
1

; (6)

and ��t; t0� can be rewritten as an unperturbed average,

 ��t; t0� � hA�t�R�t0 ! t�i0; (7)

where R�t0 ! t� �
P
t00@h ln�WCk

t00
!Ck

t00
1
�. In Fig. 1 we re-

port the simultaneous measurement of ��t; t0�, estimated
via (7), and of C�t; t0� using 103 independent MC runs of
the binary Lennard-Jones mixture described above for
T � 0:75. (The details of the numerics appeared recently

 t − t
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FIG. 1. Simultaneous measurement of susceptibility ��t; t0�
and correlation C�t; t0� in 103 independent unperturbed trajecto-
ries at T � 0:75 in the LJ system using Eq. (5) for MD and
Eq. (7) for MC simulations. For MD the noise diverges expo-
nentially and ��t; t0� cannot be evaluated for t� t0 > 10, as
indicated in the inset showing C�t; t0� measured in MD. In MC
simulations ��t; t0� perfectly follows the FDT prediction indi-
cated by a full line over the whole time range.
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[12].) The measurement now easily extends to the whole
range of time scale over which C�t; t0� changes, and FDT is
perfectly obeyed. Although MC trajectories are chaotic, no
exponential divergence of the noise is observed, at variance
with the MD case. What Eq. (7) in fact does is to use a
single unperturbed trajectory to evaluate the value the
observable A�t� would have taken if an infinitesimal field
had been applied. Additionally, the evaluation of Eq. (7) is
computationally free since it only requires updating one
additional observable, R�t0 ! t�, during the production of
unperturbed trajectories. Finally, several susceptibilities
and correlations may now be computed during the same
simulation, and time averaging is easily implemented. The
main limitation of the method is again statistics: ��t; t0�
now takes the form of a multitime correlator, and its
measurement becomes statistically costly as t� t0 gets
too large. We find an algebraic growth of the noise, as in
spin systems [11], which is nevertheless a drastic improve-
ment over exponential growth. This will allow us to study
aging systems below. A second drawback is the need to
replace Newtonian by Monte Carlo dynamics since the
resulting dynamics are not necessarily equivalent.
Quantitative agreement between stochastic and MD dy-
namics for the long-time relaxation of supercooled liquids
is well established [13], and MC simulations have been
shown to be a very efficient way of studying glassy dy-
namics [12].

We now apply Eq. (7) to measure ��t; t0� after a sudden
quench to very low temperature. Physical properties of the
system now depend on the time t0 spent since the quench,
the system ‘‘ages’’ [14]. Energy slowly decreases with
time, while dynamics gets slower [14]. The FDT in
Eq. (3) no more applies, and the following generalization
was suggested for glassy materials [15]

 

@
@t0
��t; t0� � �

X�t; t0�
T

@
@t0
C�t; t0�; (8)

where X�t; t0� is the fluctuation-dissipation ratio (FDR),
X�t; t0� � 1 at equilibrium. Deviations of the FDR from
unity may quantify the distance from equilibrium [15].

Earlier attempts to measure X�t; t0� in molecular glasses
[7,16] used the following protocol: quench the system at
time 0; apply a small field at t0 > 0 and measure ��t; t0� for
times t � t0; build a parametric ‘‘FD plot’’ of ��t; t0� versus
C�t; t0�. Crucially, this amounts to replacing @t0 by @t in (8),
a procedure which is correct if X�t; t0� is not an explicit
function of t and t0 [17]. Unbiased FDR measurements
require instead the evaluation of ��t; t0� at fixed t for
various t0, so that the FDR can be graphically deduced
from the slope, �X�t; t0�=T, of FD plots [18]. This is
numerically too costly if nonequilibrium techniques are
used. The difficulty is easily overcome with Eq. (7), and we
shall therefore report the first unbiased FDR measurements
in aging molecular liquids.

In Fig. 2 we use both time parametrizations to build FD
plots in two glass formers: the LJ system described above

and the BKS model for silica [19]. The LJ results are
qualitatively consistent with earlier reports [16]. The plots
consist of two distinct pieces, FDT being satisfied for small
t� t0, ‘‘violated’’ for large t� t0. Strikingly, FD plots are
well described by two straight lines, leading to a sensible
definition of a constant FDR, x, at large t� t0. However, it
is obvious in Fig. 2 that (incorrectly) estimating x from
fixed-t0 measurements yields values that seriously differ
from unbiased estimates from fixed-t data, an error made
in all previous works [16]. Both estimates only become
equivalent if a nontrivial limiting FD plot is found at large
time [15]. For silica, we find similar FD plots, and similar
quantitative discrepancies between both time parametriza-
tions. The disagreement with earlier results is more pro-
nounced since FDR larger than unity were reported [7]. We
have repeated our measurements at several temperatures
between 500 and 2500 K, wave vectors from 0.3 to 13 �A�1,
both for Si and O atoms. We always find FD plots as in
Fig. 2 with X�t; t0�< 1.

We have used the flexibility offered by Eq. (7) to char-
acterize further the properties of FDRs in both aging
liquids in Fig. 3. The top left panel presents evidence that
different observables share the same FDR value, obtained
by changing the wave vector used to evaluate dynamic
functions. Similar results were obtained for silica. The
top right panel shows that Si and O atoms in silica display
similar FD plots, with equal FDR values. Again, we find
similar results for the two types of particles in the LJ
mixture. These results suggest that it is sensible to define,
for fixed t, a unique FDR value x�t� characterizing the
nonequilibrium part of FD plots. These findings are there-
fore compatible with the physical idea [5] that slow rear-
rangements in aging supercooled liquids behave as if they
were thermalized at an ‘‘effective temperature’’ defined by
Teff�t� � T=x�t� [15], with Teff�t�> T in the two investi-
gated systems. Our data indicate that Teff�t� decreases very
slowly with t. Finally, the bottom panel shows the tem-
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FIG. 2. Simultaneous measurement of ��t; t0� and C�t; t0� in
aging LJ (T � 0:4, k � 6:7) and silica (T � 2500 K, k �
2:7 �A�1). Fitting the nonequilibrium part of the FD plots (dashed
line) for fixed-t parametrizations directly yields the FDRs x �
0:29 (LJ) and x � 0:49 (BKS). Incorrectly extracting x from
fixed-t0 data would yield 0.36 (LJ) and 0.63 (BKS), seriously
underestimating FDT deviations.
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perature dependence of the FDR measured at a single large
time, x�t � 104�. To compare both liquids we have to
normalize the temperature by some temperature scale.
We choose the ‘‘mode-coupling’’ temperature [Tc �
0:435 (LJ) and Tc � 3300 K (BKS)] because equilibration
is numerically difficult below Tc and aging effects can be
detected. Remarkably, we find that FDRs in the two liquids
display a very similar temperature dependence, x 	
0:47T=Tc, at small T. This confirms that both fragile (LJ)
and strong (BKS silica) glass formers studied in this work
display similar aging properties.

We have introduced a new technique to efficiently
measure linear susceptibilities in molecular simulations
which uses unperturbed trajectories to evaluate response
functions and outperforms subtraction techniques in
Monte Carlo simulations. This allowed us to report the
first unbiased numerical estimates of FDRs in aging mo-
lecular liquids and to extend its determination to a wide
range of times, temperatures, and observables. We showed
that previous analysis quantitatively underestimated FDT
violations in LJ systems, while our results for silica are in
qualitative disagreement with earlier results.

I thank J.-L. Barrat who suggested to reconsider the
aging regime of BKS silica and followed this work, and
R. L. Jack, W. Kob, and P. Sollich for useful discussions
and remarks on the manuscript.
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FIG. 3. Top left: FD plots for fixed T and t in the LJ system and different wave vectors displaying the same nonequilibrium value of
the FDR. Top right: FD plots for Si and O (horizontally shifted by 0.2) in BKS for fixed T, k � 2
 7 �A�1, and various t. For
t � 4
 104, the FDR x � 0:51 fits both sets of data. Bottom: temperature dependence of the FDR at a single large time, x�t � 104�,
for LJ and BKS systems. The temperature is normalized by the mode-coupling temperature Tc. A linear behavior (dashed line) is
observed at low T.

PRL 98, 220601 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
1 JUNE 2007

220601-4


