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We establish a framework which allows one to construct novel schemes for measurement-based
quantum computation. The technique develops tools from many-body physics—based on finitely
correlated or projected entangled pair states—to go beyond the cluster-state based one-way computer.
We identify resource states radically different from the cluster state, in that they exhibit nonvanishing
correlations, can be prepared using nonmaximally entangling gates, or have very different local
entanglement properties. In the computational models, randomness is compensated in a different manner.
It is shown that there exist resource states which are locally arbitrarily close to a pure state. We comment
on the possibility of tailoring computational models to specific physical systems.
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No classical method is known that is capable of effi-
ciently simulating the results of measurements on a general
many-body quantum system. What is a burden to computa-
tional physics can be made a virtue in quantum information
science. Indeed, universal quantum computation is pos-
sible by first preparing a certain multipartite entangled
resource—called a cluster state [1], which does not depend
on the algorithm to be implemented—followed by local
measurements on the constituents. This idea of a
measurement-based ‘‘one-way computer’’ (QCC) [2] has
attracted considerable attention in recent years. While a lot
of progress has been made towards understanding this
computational model [3–7], there is a surprising lack of
new measurement-based computational models along
these lines or new resource states. This contrasts with the
surprising lack of development of new computational mod-
els or novel resource states. To our knowledge, no single
model distinct from the QCC has been developed based on
local measurements on a fixed, algorithm-independent qu-
bit resource state. Hence, questions of salient interest seem
to be: Can we systematically find alternative schemes for
measurement-based quantum computation? What are the
properties that distinguish computationally universal re-
source states? These questions are clearly central when
thinking of tailoring resource states to specific physical
systems, e.g., to cold atoms in optical lattices, purely linear
optical systems, or condensed-matter ground states. The
problem is also relevant to many-body physics, when the
question of efficient classical simulatability [8] is ad-
dressed: Quantum states may be thought of as being or-
dered according to their computational potency, universal
and efficiently simulatable states forming the respective
extremes.

In this Letter, we demonstrate how methods from many-
body physics can be extended to develop schemes for
measurement-based quantum computation (MBC). Start-
ing from the concepts of matrix-product, projected en-
tangled pair, and finitely correlated states [9,10], we de-
velop a framework broad enough to allow for the construc-

tion of novel universal resources and models. The notion of
universality in the context of one-way computing was
recently addressed in Ref. [11]. A universal resource in
their sense is a family of states out of which any other state
can be obtained by local measurements on a subset of sites.
It follows from the definition that many states cannot be
universal: For example, states which are locally nonmax-
imally entangled have nonvanishing two-point correlation
functions hOiOi�ri � hOiihOi�ri or a nonmaximal local-
izable entanglement between any two constituents [11,12].
Complementary to this approach, we refer to a device as a
universal quantum computer, if it can efficiently predict the
outcome of any quantum algorithm. A state will hence be
called a universal resource if one can, assisted by the
results of local measurements on the state, efficiently
predict the result of any quantum computation.

To exemplify the power of our framework, we describe
three new models for MBC in quantum lattice systems. In
all these models, the randomness is compensated in a
manner different from the QCC. They highlight that, in-
triguingly, many properties of the original one-way com-
puter may be relaxed: (i) We find resources exhibiting
nonvanishing two-point correlations (which are typical
for natural many-body ground states). The original discus-
sion of theQCC depended on the fact that the cluster can be
prepared by mutually commuting unitaries (MCUs [13])
acting on small neighborhoods. Commutativity enables
one to logically break down a QCC calculation into small
parts corresponding to individual gates; however, the use of
MCUs implies severe restrictions, such as that the corre-
lations vanish outside some neighborhood. Hence our
framework can prove universality for states not amenable
to any MCU-based technique. (ii) We treat a universal
weighted graph state with partly weakly entangled bonds.
(iii) We present universal states which are locally arbi-
trarily pure.

Matrix-product states.—The starting point is the famil-
iar notion of a matrix-product state (MPS) [9]. We will first
look at the simple case of a chain of n qubits. Its state is
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specified by (i) an auxiliary D-dimensional Hilbert space,
called correlation space, (ii) two operators A�0�, A�1� on
CD, and (iii) two vectors jLi, jRi, representing boundary
conditions. Explicitly

 j�i �
X

s1;...;sn�0;1

hRjA�sn� . . .A�s1�jLijs1; . . . ; sni: (1)

In order to generalize Eq. (1) to 2D lattices, we need to cast
it into the form of a tensor network. Setting Li � hijLi,
A�s�i;j � hjjAjii, we arrive at hs1; . . . ; snj�i �PD
i0;...;in

Li0A�s1�i0;i1 . . .A�sn�in�1;inR
y
in

.
Computational tensor networks.—We introduce a

graphical notation which enables an intuitive understand-
ing of Eq. (1) and its 2D equivalent. Tensors will be
represented by boxes, indices by edges:

L r = L , A [s]l,r = A [s] , R †
l = R † .

A single-index tensor can be interpreted as the expansion
coefficients of either a ‘‘ket’’ or a ‘‘bra.’’ Sometimes, we
will indicate what interpretation we have in mind by plac-
ing arrows on the edges: outgoing arrows designating
‘‘kets’’, incoming arrows ‘‘bras.’’ Connected arrows des-
ignate contractions of the respective indices. If j�i is a
general state vector in C2, we abbreviate h�j0iA�0� �
h�j1iA�1� by A���. The overlap of j�i with a local pro-
jection operator is easily derived:

 

n

i
φ i | | = L A [φ 1] . . . A [φ n ] R † . (2)

Equation (2) should be read as follows: Initially, the corre-
lation system is in the state jLi. Subsequent measurements
of local observables with eigenvectors j�ii at the ith site
induce the evolution A��i�, thereby ‘‘processing’’ the state
in the correlation space. The probability of a certain se-
quence of measurements to occur is given by the overlap of
the resulting state vector with jRi. An appealing perspec-
tive on MBC suggests itself: Measurement-based comput-
ing takes place in correlation space; the gates acting on the
correlation systems are determined by local measurements.
The crucial new insight compared to previous treatments of
MPS and PEPS in the context of many-body physics [9,10]
or MBC [7] is that the matrices used in the parame-
trization of an MPS can be directly understood as quantum
gates on a logical space. We will refer to this representation
of MBC, as a computational tensor network (CTN).

The graphical notation greatly facilitates the passage to
2D lattices. Here, the tensors A�0=1� have four indices
A�s�l;d;r;u, which are contracted with the indices of the
left, right, upper and lower neighbors, respectively:

 

s s1,1, . . . , 2,2 | =

U U

L A [s1,1] A [s2,1] R

L A [s1,2] A [s2,2] R

D D

(3)

for various boundary conditions L, D, R, and U. Notably,
simulating measurements on states as in Eq. (3) is notori-
ously hard for a classical computer [10]. This fact is an
incarnation of the power of quantum computers and no
problem to our approach. We will now describe several
examples, demonstrating the versatility of our framework
and showing how—surprisingly—many reasonable as-
sumptions about universal resources turn out to be unnec-
essary. In what follows, we use the standard notation X, Y,
Z for the Pauli operators, H for the Hadamard gate and
S � diag�1; i� for the �=4-gate. The controlled �-phase
gate is j0; 0ih0; 0j � j0; 1ih0; 1j � j1; 0ih1; 0j � ei�j1; 1i�
h1; 1j. Lastly, j	i � 2�1=2�j0i 	 j1i�.

AKLT-type states.—In this example, we consider ground
states of nearest-neighbor spin-1 Hamiltonians of the
AKLT-type, as they are well known in the context of
condensed-matter physics [9]. To be brief, we first describe
a 1D setting, turning to 2D structures later. More specifi-
cally, we investigate the state induced by

A [0] = H, A [1] = |1 0|, A [2] = |0 1| .

This is the exact unique ground state of a nearest-neighbor
frustration-free gapped Hamiltonian [14]. One finds that
the two-point correlation functions never vanish com-
pletely [9]. Still, all single-qubit unitaries on the correla-
tion system can be realized by local physical
measurements. We set j	i :� 2�1=2�j1i 	 j2i� and con-
sider a measurement in the fj0i; j�i; j�ig-basis. Ignoring
global factors (as we will do whenever possible) one finds

A [0] = H, A [+] = X, A [− ] = ZX.

Such measurements hence cause the state of the correlation
system to be transported from left to right (up to local
unitaries). Measuring several consecutive sites, the overall
operator B applied to the correlation system is a product of
H, X, and Z’s. Assuming that we intended to just transport
the information faithfully, we conceive B as an unwanted
by-product. To understand this structure, we record two
elementary observations: (i) The operators H, X, Z form a
finite group B and (ii) Every element of B will occur as a
by-product after a finite expected number of steps. The
group property gives a possibility to cope with by-products
[15]: Assume that at some point the state vector of the
correlation system is given by Bj i, for some unwanted
B 2 B. We can rid ourselves of B by just transferring the
state along the chain until B�1 occurs. This technique is
completely general: It can deal with any finite by-product
group (see further examples below). The probability of
failure can be made exponentially small by adding a linear
overhead to the resource. Moving on, a measurement in the
fj0i; 2�1=2�j1i 	 ei�j2ig-basis induces one of H, S��� :�
diag�1; ei��, or ZS��� on the correlation system. Realizing
that H, Z 2 B, we can use the method sketched above to
implement both S��� and HS���H using a finite expected
number of steps. This is all we need, as these two families
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generate all of SU�2�. Lastly, it is easy to see that mea-
surements in the computational basis prepare a known state
in the correlation system (in case j1i or j2i is measured)
and can be used to read out the correlation system.

A qubit resource with nonvanishing correlations.—
We turn to the state defined by

A [s] = G|s r s | l , |L = |+ , jRi � G�1j�i, where G :�

exp�i�=kX� for some integer k > 2. The number k speci-
fies the amount of correlations in j�i: One finds
hZiZi�n�1i � hZiihZi�n�1i � �2sin2��=k� � 1�n. To pro-
ceed with the analysis, we compute

A [+] = G, A [− ] = GZ ; A [X ] = GZ x ,

where the right-hand side is a compact notation for the two
equations on the left: An observable as the argument to A��
denotes a measurement in the corresponding eigenbasis.
The outcome of the measurement is assigned to a variable;
here x � 0 in case of the �1-eigenvalue and x � 1 in case
of �1. From the previous equation, we find that G and Z
generate the finite by-product group. Proceeding exactly as
in the last example, it is easily seen that operations of the
type S��� and GS���Gy can be realized, which is again
enough the generate SU�2�.

Weighted graph states.—Both previous examples can be
embedded into 2D lattices, universal for computation [see
Fig. 1(b)]. A general technique for coupling 1D chains to
2D universal resources will be discussed by means of a
further example: the weighted graph state [3,16] shown in
Fig. 1(a). In the figure, vertices denote physical systems
initially in j�i, solid edges the application of a controlled
�-phase gate and dashed edges controlled �=2-phases, so
some of the entangling gates do not have maximal entan-
gling power. The resource’s tensor representation (acting
on a D � 2-dimensional correlation space) is given by

 

A [s] = S s |+ ru S s |+ lu Z s |+ r s |
ld s |

rd s |
l , (4)

where s 2 f0; 1g. Indices are labeled ru for ‘‘right-up’’ to
ld for ‘‘left-down’’. Boundary conditions are j0i for the ru,
lu, r directions, j�i otherwise. The broad setting for our
scheme is the following: the correlation system of every

second horizontal line in the lattice is interpreted as a
logical qubit. Intermediate lines will either be measured
in the Z eigenbasis—causing the logical bits to be iso-
lated—or in the Y basis—mediating an interaction be-
tween adjacent logical qubits.

We will first describe how to realize isolated evolutions
of logical qubits. According to Eq. (4) the tensors A�0=1�
factor, allowing us to draw only the arrows corresponding
to the factors of interest; so, e.g., A [s] |= Z s + r . . We find

 

A [Z i− 1,u ] A [Z i+1 ,u ]

A [X i ]

A [Z i− 1,d] A [Z i+1 ,d]

= HS 2x i + z i , (5)

where zi � zi�1;u � zi�1;d � zi�1;u � zi�1;d. Eq. (5) is of
the kind treated before in the case of 1D chains. Indeed,
using the same techniques, one sees easily that general
local unitaries can be implemented by measurements in the
2�1=2�j0i 	 ei�j1i� basis. The by-product group here is
given by the full single-qubit Clifford group. Turning to
two-qubit interactions, consider the schematics for a
controlled-Z gate,

 

A [X ] A [X ] A [X ]

A [Y ]

A [X ] A [X ] A [X ]

. (6)

In detail, we first perform the X measurements on the sites
shown and the Zmeasurements on the adjacent ones. If any
of these measurements yields the result ‘‘1’’, we apply a Z
measurement to the central site labeled Y and restart the
procedure three sites to the right [15]. If all outcomes are
‘‘0’’, a Y measurement is performed on the central site,
obtaining the result y. For c 2 f0; 1g,

A [X ] A [X ] A [X ]

S c|+ S c|+
= HZ c,

A [Y ]

S c|+ S c|+
= ( + ( − 1)c+ y iS c S c)|+ lu |+ ru

|c A [X ] A [X ] A [X ] = S c|+ lu S c|+ ru H |c r .

In summary, the evolution afforded on the upper line is
H�1� ��1�c�yiZ� / HSZy�c, equivalent to Zc up to by-
products. This completes the proof of universality. Note
that the expected number of steps for a gate does not
depend on the overall number of logical qubits, as we
never need all by-products to vanish simultaneously.

Entanglement properties.—In this section, we further
investigate—using different methods—to what extent
the entanglement properties of the cluster state can further
be relaxed. We ask if there are resources that are
(i) universal for QCC, (ii) translationally invariant,
(iii) which have an arbitrarily small local entropy and

FIG. 1 (color online). Two resources for universal
measurement-based quantum computing. (a) depicts a weighted
graph state, where solid lines correspond to a controlled �-phase
gate, dashed lines to �=2. (b) represents a scheme deriving from
an AKLT-type model. Dashed lines represent a state with non-
vanishing correlation functions, solid lines correspond to
�-phase gates in fj1i; j2ig.
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localizable entanglement (LE) [20], and (iv) from which
not even a Bell pair can be deterministically distilled?

To show that—surprisingly—this is indeed the case, we
will encode each logical qubit in a block of 2k� 1 hori-
zontally adjacent physical qubits. Here, k is an arbitrary
parameter. The first k qubits per block will take the role of
‘‘codewords’’, the final k� 1 are ‘‘marker qubits’’ used in
a construction to make the resource translationally invari-
ant. We start by preparing a regular cluster state in the
respective first qubit of each block. Then, we encode the
states of each of these first qubits according to j0i�
jOki :� j0i
k and j1i� jWki :� k�1=2�j0; . . . ; 0; 1i �
j0; . . . ; 1; 0i � j1; . . . ; 0; 0i�. The rear k� 1 qubits of each
block are prepared in j0; . . . ; 0; 1i. Call the resulting state
vector j�i. Finally, the resource is j�i �

P2k
t�0 T

tj�i,
where T is a cyclic translation of the lattice in the hori-
zontal direction. To realize universal computing, pick one
block and measure each of its qubits in the Z basis. In this
way, one can distinguish the states T tj�i corresponding to
different values of t. For definiteness, assume t � 0. We
then encounter a cluster state in the encoding jOki and
jWki. The key point is that, by Ref. [17], any two pure
orthogonal states can be deterministically locally distin-
guished. Hence, one can translate any single-site measure-
ment on a cluster state into a protocol for the encoded
cluster. This shows that j�i is universal for deterministic
MBC. At the same time, the von Neumann entropy SvN of
any site is arbitrarily small for sufficiently large k: one
finds that the entropy for a measurement in the computa-
tional basis reads SZ � Hb�3=�4k� 2��, where Hb is the
binary entropy function. Using the concavity of the en-
tropy, we have that LE � SvN � SZ. It follows that not
even a Bell pair can be deterministically created between
any two fixed systems.

Outlook.—Until now, the only known scheme for MBC
was the QCC and slight variations. Entire classes of states
with physically reasonable properties (e.g., nonmaximal
local entanglement, long-ranged correlations) could not be
dealt with. The framework presented opens up the possi-
bility to adopt the computational model to specific physical
systems and no longer vice versa. For example, in linear
optics computing, bonds are the easier to create the lower
the entanglement [18]. Under those circumstances, there
may well be a trade-off between the effort used to prepare a
resource and its efficiency for MBC [18]. In turn, for cold
atoms in optical lattices, exploiting cold collisions [19],
configurations as in Fig. 1(a) could possibly as feasibly be
created as the cluster state, making use of a different
interaction time for diagonal collisions. Other states may
well be less fragile to finite temperature and decoherence
effects. The presented tools open up a way to quantitatively
explore such trade-offs.
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