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We consider a high-frequency response of electrons in a single miniband of superlattice subject to dc
and ac electric fields. We show that Bragg reflections in miniband result in a parametric resonance which
is detectable using ac probe field. We establish theoretical feasibility of phase-sensitive THz amplification
at the resonance. The parametric amplification does not require operation in conditions of negative
differential conductance. This prevents a formation of destructive domains of high electric field inside the
superlattice.
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Motion of an electronic wave packet in a periodic lattice
potential with a period a subject to a constant electric field
Edc is characterized by oscillations of its velocity with the
Bloch frequency !B � eaEdc=@ [1]. Bloch oscillations
originate in Bragg reflections of the particle from the
Brillouin zone boundary. Among solid state structures,
artificial semiconductor superlattices (SLs) with a rela-
tively large period and narrow bands are most suitable
for manifestation of Bloch oscillations effects [2]. In the
stationary transport regime, Bloch oscillations causes static
negative differential conductivity (NDC) of SL if !B� > 1
(� ’ 100 fs is a characteristic scattering time) [2]. For
!B� > 1 and homogeneous distribution of electric field
inside SL, it can potentially provide a strong gain for
THz frequencies [3]. However, in conditions of static
NDC the same Bragg reflections, which give rise to
Bloch oscillations, do excite a soft dielectric relaxation
mode resulting in a formation of domains of high field
inside SL [4]. The electric domains destroy Bloch gain in a
long SL. Therefore, a utilization of Bloch gain is a difficult
problem [5].

Using simple semiclassical approach, let us consider
now an influence of Bragg reflections on dynamics of an
electron subject to a strong ac (pump) field Ep�t� �
E0 cos!t. Combining the acceleration theorem for the
electron momentum along the SL axis, _p � eEp�t�, and
the tight-binding energy-momentum dispersion for a single
miniband of the width �, "�p� � ���=2� cos�pa=@�, we
arrive to the expression "�t� �

P
1
k�0 C2k cos�2k!t�, where

C2k � ��J2k�eaE0=@!� for k > 0 [Jn�x� are the Bessel
functions]. It shows that the electron energy within the
miniband varies with frequencies which are some even
harmonics of !: !even

" � s! (s � 2; 4; 6 . . . ). If a bias
Edc is also included to the pump field, "�t� oscillates with
two combinations of frequencies !B �!

even
" and !B �

!odd
" , where !odd

" � s! with s � 1; 3; 5 . . . . However, in
the presence of collisions the oscillations with Bloch fre-
quency decay, whereas energy oscillations with the fre-
quencies imposed by ac field do survive. The effective
electron mass in the nonparabolic miniband also varies

periodically with the frequency of energy oscillations.
Now let us suppose that additionally a weak ac field Epr �

E1 cos�!1t��� is also applied. The frequency of this
probe field !1 is fixed by an external circuit (resonant
cavity). Since electron transport in the band depends on
an instant value of the effective electron mass, one should
expect the parametric resonance for !�s�� � l!1 (l is an
integer and !�s�" stands for either !even

" or !odd
" ). The most

strong parametric resonance occurs when l � 2, that is for
!�s�" =2 � !1 [6]. As in other parametric devices [6], the
parametric resonance due to Bragg reflections can result in
a regenerative amplification of the probe field. However,
currents at harmonics of the pump ac field are generated in
SL due to strong nonparabolicity of its miniband [7]. If the
parametric amplification arises at the same frequencies as
the frequencies of generated harmonics, the effect of har-
monics blurs out the weaker (/E1) effect of small-signal
gain. This problem is well known for the parametric am-
plification in Josephson junctions, which also have strong
nonlinearity [8].

We are interested in manifestations of the parametric
resonance due to Bragg reflections in the presence of
collisions, i.e., in the miniband transport regime [5]. Here
two main questions arise: can the parametric resonance
provide a high-frequency gain in the miniband transport
regime? Is it possible to avoid space-charge instability?
Some of these problems have been discussed earlier. In
1977 Pavlovich first used Boltzmann transport approach to
calculate the coefficient of intraband absorption of a weak
probe field (!1) in SL subjected to a strong ac pump of
commensurate frequency (!) [9]. He briefly mentioned
a possibility of negative absorption for some !1=!.
However, neither physical origin of the effect nor its com-
patibility with conditions of electric stability were ad-
dressed in this pioneer work. Further, in a recent Letter
[10], we presented numerical support for a possibility of
parametric amplification without formation of electric do-
mains in the miniband transport regime. Solving numeri-
cally balance equations for SL [11] we demonstrated a
feasibility of gain at even harmonics. In this situation, we
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observed that gain can exist in the absence of NDC. It
guarantees electric stability for moderate concentrations of
electrons [12].

In this Letter, we analytically calculate gain of a weak
high-frequency (THz) probe field in SL miniband under the
conditions of parametric resonance, !�s�" =2 � !1, caused
by the action of a strong ac pump field. The physical origin
of the parametric resonance is a periodic variation of
effective electron masses in miniband and, at high THz
frequencies, also a variation of specific quantum induc-
tance. We prove that for a proper choice of relative phase�
a power is always transferred from the pump to the probe
field. Furthermore, we show that the same pump field also
modifies free carrier absorption in SL. We find that the gain
caused by the parametric resonance can sufficiently over-
come the modified free carrier absorption and simulta-
neously remain unaffected by the generated harmonics of
the pump only in two distinct cases: for amplification at
half harmonics in biased SL and for amplification at even
harmonics in unbiased SL (Fig. 1). In both these cases we
predict a significant amplification at room temperature in
the absence of NDC.

Within the semiclassical approach [5] we first solved
Boltzmann transport equation for a single miniband and
bichromatic field Ep�t� � Epr�t� with commensurate fre-
quencies. Then we calculated the phase-dependent absorp-
tion of the probe field, which is defined as

 A � hV�t� cos�!1t���it; (1)

where V�t� � �V�t�=Vp is the electron velocity @"�p�=@p
averaged over a distribution function satisfying the
Boltzmann equation and h. . .it means averaging over a
time period which is common for both pump (!) and probe
(!1) fields. Gain corresponds to A< 0. Note that through
the Letter the averaged velocity V, averaged energy W �
�"=j"eqj, and field strengths E0;1 and Edc are scaled to the
Esaki-Tsu peak velocity Vp � ��a=4@���T�, the equilib-
rium energy in absence of fields "eq � ���=2���T� [5]
and the critical field Ec � @=ea� [2], respectively. The
temperature factor is ��T� � I1��=2kBT�=I0��=2kBT�
[here I0;1�x� are the modified Bessel functions] [13].

Absorption of a weak (E1 ! 0) probe field in SL
[Eq. (1)] is linear in E1. It can be naturally represented as
the sum of phase-dependent coherent and phase-
independent incoherent components A � Acoh � Ainc.

Parametric effects in the absorption are described by its
coherent component. It has the form

 Acoh � ���1=4�B cos�2����opt��; (2)

where the amplitude of coherent absorption B> 0 and
�1 � E1=�!1��. The coherent component always provides
gain if j���optj<�=4. Gain has maximum at an opti-
mal phase �opt. Under the action of pump field, such
energy storage parameters of SL as the energy of electrons
in minibandW and mesoscopic electric reactance, which is
described by the reactive current Isin / Vsin, are simulta-
neously harmonically modulated. The variables B and�opt

can be represented in terms of the specific harmonics of
W�t� and out-of-phase component of electron velocity
Vsin�t� as

 B � �B2
lf � B

2
hf�

1=2; tan�2�opt� � �Bhf=Blf ; (3)

 

Blf � 2Wsin
s �!B�;

Bhf � Wcos
s �!B �!1� � 2Wcos

s �!B� �Wcos
s �!B �!1�

� �Vsin
s �!B �!1� � Vsin

s �!B �!1��; (4)

where the index s is the same as involved in the condition
of parametric resonance and the Fourier components of the
quantum reactive parameters are given by
 

Wcos
k � �

X

l

Jl����Jl�k��� � Jl�k����K�!B � l!�;

Vsin
k �

X

l

Jl����Jl�k��� � Jl�k����K�!B � l!�;

Wsin
k � �

X

l

Jl����Jl�k��� � Jl�k����V
ET�!B � l!�:

(5)

In Eqs. (5) � � E0=�!��, the Esaki-Tsu drift velocity
VET�!B� �

!B�
1��!B��2

[2,5] and Esaki-Tsu energy K�!B� �
1

1��!B��2
[5,11] determine the dependence of Wcos

k �!B�,

Wsin
k �!B�, and Vsin

k �!B� on the dc bias Edc. It is worth to
notice that instead of harmonics of energy we alternatively
can consider harmonics of effective electron mass because
m�1� �"� / W.

In the low frequency range !�, !1�	 1, we found that
Bhf ! 0 and therefore B � Blf , while for THz frequencies
(!� * 1) both terms Blf and Bhf contribute to B. The
behavior of the absorption amplitude B at THz frequencies
has two peculiarities. First, influence of the out-of-phase
component of electron velocity at the pump frequency and
its harmonics also becomes important. As follows from
Eq. (5), it describes inductive response of inertial miniband
electrons to ac field in the limit !�
 1: Vsin

1 � E0=!�L,
L�1 � 2J0���J1�����1K�!B� [14]. Second, interaction
of miniband electrons with THz fields has quantum nature

E1

1

1

E0

FIG. 1 (color online). Two schemes of the parametric ampli-
fication in superlattice without corruption from generated har-
monics. In the presence of ac pump (red online) of the frequency
!, parametric gain for a weak signal (green online) of the
frequency !1 arises either at !1 �: !=2; 3!=2; . . . in biased
SL (Edc � 0) or at !1 �: 2!; 4!; . . . in unbiased SL (Edc � 0).
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[5]. Therefore, even a very weak probe field produces a
backaction on the SL reactive parameters. This is indicated
by an appearance of virtual processes of absorption and
emission of one quantum of the probe field (�@!1) in the
expression for Bhf [Eq. (4)]. In particular, Bhf is determined
by the difference between changes in electron energy at
absorptionW�!B �!1� �W�!B� and emissionW�!B� �
W�!B �!1�. The asymmetry in the elementary acts of
emission and absorption is caused by scattering. It resem-
bles corresponding asymmetry revealed in the quantum
description of THz Bloch gain in dc biased SLs [15].

We turn now to the analysis of the incoherent component
of absorption Ainc, which is independent on both the ratio
!1=! and phase difference �. It can be represented as

 Ainc �
�1

2
�Vdc�!B �!1� � Vdc�!B �!1��; (6)

where Vdc � hVit is the drift velocity induced in SL by the
pump field alone. It is determined by the well-known
formula [16]

 Vdc�!B� �
X

l

J2
l ���V

ET�!B � l!�: (7)

Ainc describes the free carrier absorption modified by the
pump. Naturally, Ainc becomes the usual free carrier ab-
sorption Ainc / �1�!2

1�
2��1 in the absence of pump field

(E0 � Edc � 0). Remarkably, as follows from Eq. (6), the
pump could suppress the free carrier absorption [if
Vdc�!B �!1� � Vdc�!B �!1�] or even make its value
negative [if Vdc�!B �!1�> Vdc�!B �!1�].

On the other hand, it is easy to see that in the quasistatic
limit, !1�	 1, the finite difference in Eq. (6) goes to the
derivative @Vdc=@Edc, which determines the slope of de-
pendence of Vdc on dc bias at the working point Edc. The
sign of this derivative controls electric stability against
spatial perturbations of charge density [12,17]: for negative
slope @Vdc=@Edc < 0 destructive space-charge instability
arises inside SL. In contrast, @Vdc=@Edc > 0 is the neces-
sary condition for absence of the electric domains in
moderately doped SLs [12].

For general case !1� * 1 our numerical analysis
showed that the sign of finite difference (6) is almost
always same as the sign of the derivative @Vdc=@Edc if
SL is unbiased (Edc � 0) or only weakly biased. Therefore,
Ainc > 0 guarantees electric stability. The total absorption
A � Acoh � Ainc still can be negative in conditions of
electric stability if j���optj<�=4 and j Acoh j >Ainc.
In the case of unbiased SL (Fig. 1), such situation is
illustrated in Figs. 2 and 3. Figure 2 shows the regions of
negative absorption (A < 0) at even harmonics together
with the regions of NDC (@Vdc=@Edc < 0) in !E0 plane.
Here the phase is chosen to be optimal [Eq. (3)]. The values
of E0 and ! resulting in electric instability (red areas in
Fig. 2) are close to the lines of Bessel roots J0��� � 0. It
can be explained noticing that for Edc ! 0 transition to
NDC is accompanied by absolute negative conductivity

(ANC) [12]. However, as can be derived from Eq. (7) in
the limit Edc ! 0, ANC arises only for J0��� ’ 0 [11].
Importantly, the regions of gain and areas of instability
overlap only in limited ranges of the pump amplitudes and
frequencies. Moreover, the magnitude of domainless gain
is significant even at room temperature (Fig. 3). To esti-
mate gain � in units cm�1 [15] we used the formula � �
�0�A=E1� with �0 � 8�eNVp=�Ecnrc� and the following
typical semiconductor SL parameters: a � 6 nm, � �
60 meV, electron density N � 1016 cm�3, � � 200 fs, re-
fractive index nr �

������
13
p

(GaAs), and T � 300 K.
Even harmonics of the pump satisfy the parametric reso-

nance condition !even
" =2 � !1. For unbiased case, only
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FIG. 3 (color online). Magnitude of negative absorption at
even harmonics (marked curves) as a function of the pump
frequency ! for the fixed pump amplitude E0 � 5:1 and � �
�opt. Dark (red online) segments indicate intervals of NDC.
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FIG. 2 (color online). Amplification at even harmonics in
unbiased superlattice for � � �opt. Regions above the marked
curves correspond to gain at !1 �: 2!, 4!, 6!. Dark (red
online) areas correspond to electric instability.
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this scheme provides amplification which is unaffected by
generated harmonics. On the other hand, for Edc � 0 sub-
harmonics of the pump (!1 �: !=2; 3!=2; . . . ) satisfy
another parametric resonance condition !odd

" =2 � !1.
We found that regions of gain at different half harmonics
and areas of electric instability (NDC) have no overlapping
for many values of E0 and !�. Figure 4 illustrates this for
amplification at !1 � !=2 and Edc � 1. Here threshold is
very low while gain is still significant even at E0 � 0:5
(Fig. 4, inset). We explain it analyzing the behavior of both
Acoh and Ainc for small E0. First, for!1=! � 1=2 relatively
large first harmonics (s � 1) of the quantum reactive pa-
rameters contribute to Acoh < 0 [Eq. (4)]. Second, the
tangent to the curve describing a dependence of Vdc on
Edc [Eq. (7)] has a small positive slope at the working point
Edc � 1. Following Eq. (6) it results in a rather small
Ainc > 0. Therefore, the total gain A< 0 is not small.

In this Letter, we focused on the phase-sensitive degen-
erate parametric amplification of THz fields in SLs. Our
theory can be directly extended to describe nondegenerate
phase-insensitive amplification. Here, at least for the case
of unbiased SL, regions of NDC in !E0 plane are still
located only near Bessel roots lines (cf. Fig. 2). Therefore,
by a proper choice of amplitude and frequency of the pump
it is also possible to reach electrically stable amplification
of weak signal (!1) and idler (!2) fields satisfying the
parametric resonance condition !even

" � !1 �!2.
The parametric effects in a nonparabolic energy band

should exist not only in semiconductor SLs but also in
other artificial periodic structures, including periodic

waveguide arrays [18] and microcavity SLs [19] for light,
phononic microcavity arrays [20], carbon nanotube SLs in
perpendicular electric field [21], and dissipative optical
lattices for ultracold atoms [22]. These SLs were specially
suggested and designed to manifest effects of Bloch oscil-
lations [19–22] or ac field [18,21] in a single band and
therefore potentially can be used to observe the parametric
amplification.

In summary, we described physical mechanisms for the
parametric resonance and resulting high-frequency ampli-
fication in an energy band. The parametric amplification of
a weak signal is possible without negative differential
conductance. Parametric effects due to Bragg reflections
in ac-driven lattices are no less important than manifesta-
tions of Bloch oscillations in the case of a pure dc bias.
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FIG. 4 (color online). Amplification with a low threshold at
!1 � !=2 in biased superlattice for Edc � 1 and � � �opt.
Marked region between curves corresponds to gain, while dark
(red online) area corresponds to electric instability. Inset: mag-
nitude of negative absorption as function of the pump amplitude
E0 for !� � 0:25.
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