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The problem of closing the detection loophole with asymmetric systems, such as entangled atom-
photon pairs, is addressed. We show that, for the Bell inequality I3322, a minimal detection efficiency of
43% can be tolerated for one of the particles, if the other one is always detected. We also study the
influence of noise and discuss the prospects of experimental implementation.
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Nonlocality is one of the most striking properties of
quantum mechanics. Two distant observers, each holding
half of an entangled quantum state and performing appro-
priate measurements, share correlations which are non-
local, in the sense that they violate a Bell inequality [1].
In other words, those correlations cannot be reproduced by
any local hidden variable (LHV) model. All laboratory
experiments to date have confirmed quantum nonlocality
[2–8]. There is thus strong evidence that nature is non-
local. However, considering the importance of such a state-
ment, it is crucial to perform an experiment free of any
loopholes, which is still missing today. Another motivation
comes from quantum information science, where the se-
curity of some quantum communication protocols is based
on the loophole-free violation of Bell inequalities [9].

Performing a loophole-free Bell test is quite challeng-
ing. One first has to ensure that no signal can be transmitted
from one particle to the other during the measurement
process. Thus the measurement choice on one side and
the measurement result on the other side should be space-
like separated. If this is not the case, one particle could
send some information about the measurement setting it
experiences to the other particle. This is the locality loop-
hole [10]. Secondly the particles must be detected with a
high enough probability. If the detection efficiency is too
low, a LHV model can reproduce the quantum correlations.
In this picture a hidden variable affects the probability that
the particle is detected depending on the measurement
setting chosen by the observer. This is the detection loop-
hole [11,12].

In practice, photon experiments have been able to close
the locality loophole [3–7]. However the optical detection
efficiencies are still too low to close the detection loophole.
For the Clauser-Horne-Shimony-Holt (CHSH) [13] in-
equality, an efficiency larger than 82.8% is required to
close the detection loophole with maximally entangled
states. Surprisingly, Eberhard [14] showed that this thresh-
old efficiency can be lowered to 66.7% by using nonmax-
imally entangled states. Threshold efficiencies for other
Bell inequalities have also been studied [15–17]. On the
other hand, an experiment carried out on trapped ions [8]
closed the detection loophole, but the ions were only a few

micrometers apart. It would already be a significant step
forward to close the detection loophole for well-separated
systems. Recently, new proposals for closing both loop-
holes in a single experiment were reported [18,19].

In this Letter we focus on asymmetric setups, where the
two particles are detected with different probabilities. This
is the case, e.g., in an atom-photon system: the atom is
measured with an efficiency close to 1 while the probabil-
ity to detect the photon is smaller. Intuition suggests that if
one party can do very efficient measurements, then the
minimal detection efficiency on the other side should be
considerably lowered compared to the case where both
detectors have the same efficiency. Experimentally this
approach might be quite promising, since recent experi-
ments have demonstrated atom-photon entanglement
[20,21] and violation of the CHSH inequality [22]. In the
following, after presenting the general approach to the
study of the detection loophole in asymmetric systems,
we focus on the case where one of the systems is detected
with efficiency �A � 1 and we compute the threshold
efficiency �th

B for the detection of the other system. The
best results are obtained for the three-setting I3322 inequal-
ity [23]. In analogy to Eberhard’s result [14], we show that
nonmaximally entangled states require a lower efficiency;
moreover, here, the threshold goes down to �43%. Then
we study two noise models: background noise and noisy
detectors. Finally, we discuss the feasibility of experiments
in the light of these results.

General approach.—Let us consider a typical Bell test
scenario. Two distant observers, Alice and Bob, share some
quantum state �AB. Each of them chooses randomly be-
tween a set of measurements (settings) fAigi�1;...;NA for
Alice, fBjgj�1;...;NB for Bob. The result of the measurement
is noted a, b. Here we will focus on dichotomic observ-
ables (corresponding to von Neumann measurements on
qubits) and Alice and Bob will use the same number of
settings, i.e., a; b 2 f0; 1g and NA � NB � N. Repeating
the experiment many times, the two parties can determine
the joint probabilities p�a; bjAi; Bj� for any pairs of set-
tings, as well as marginal probabilities p�ajAi� and
p�bjBj�. A Bell inequality is a constraint on those proba-
bilities, which is satisfied for all LHV models. We say that
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a quantum state is nonlocal if and only if there are mea-
surement settings such that a Bell inequality is violated.
Mathematically speaking a Bell inequality is a polynomial
of joint and marginal probabilities. In the case N � 2 the
only relevant Bell inequality is the CHSH inequality, which
is defined here using the Clauser-Horne polynomial [24],

 ICHSH � P�A1B1� � P�A1B2� � P�A2B1� � P�A2B2�

� P�A1� � P�B1�; (1)

where P�AiBj� is a shortcut for P�00jAiBj�, the probability
that a � b � 0. The bound for LHV models is ICHSH � 0,
while quantum mechanics can reach up to ICHSH �

1��
2
p � 1

2 .

We also introduce the Bell polynomial

 I3322 � P�A1B1� � P�A1B2� � P�A1B3�

� P�A2B1�P�A2B2� � P�A3B1� � P�A2B3�

� P�A3B2� � 2P�A1� � P�A2� � P�B1�; (2)

which is the only relevant Bell inequality for the case N �
3 [23]. The local limit is I3322 � 0 and quantum mechanics
violates I3322 up to 1

4 .
As an introductory example, consider the case where

Alice and Bob share maximally entangled states and detect
their particles with the same limited efficiency �; since
they must always produce an outcome, they agree to output
‘‘0’’ in case of no detection. When both detectors fire, the
CHSH inequality is maximally violated, i.e., Id;dCHSH � Q �
1��
2
p � 1

2 . Here Id;dCHSH is the value obtained for the CHSH

polynomial when both parties detect their particles. When
only Alice’s detector fires, P�Ai� �

1
2 , P�Bj� � 1, and

P�AiBj� �
1
2 , therefore Id;;CHSH � MA � �

1
2 ; similarly,

when only Bob’s detector fires, I;;dCHSH � MB � �
1
2 .

When no detector fires, the LHV bound is reached,
I;;;CHSH � 0, since P�Ai� � P�Bj� � P�AiBj� � 1.
Consequently, the whole set of data violates the CHSH
inequality if and only if

 �2Q� ��1� ���MA �MB�> 0; (3)

yielding the well-known threshold efficiency �> 82:84%.
In general, Alice and Bob test a Bell inequality I � L on

a state �AB having two different detection efficiencies, �A
and �B. In analogy to the previous example, Alice and Bob
must choose the measurement settings fAi; Bjg and the
value they output in the case of no detection, in order to
maximize
 

I�A;�B � �A�BQ� �A�1� �B�MA � �1� �A��BMB

� �1� �A��1� �B�X; (4)

where Q � Tr�I�AB� is the mean value of the Bell opera-
tor I associated to the inequality,MA;B and X are the values
of I obtained when one or both detectors do not fire. We
stress that the measurement settings that maximize I�A;�B
are not those that maximize Q for the same quantum state,

except for the maximally entangled state. Concerning the
values assigned to the outputs by Alice and Bob in the case
of no detection, we limit ourselves to dichotomic out-
comes, i.e., a; b 2 f0; 1g. Note that they could also use a
third outcome for no detection [15].

Case study: �A � 1.—The general approach above can
be carried out for any specific values of the efficiencies;
now we consider the limit where Alice’s detector is perfect,
�A � 1. Moreover, we consider inequalities such that L �
0. From (4) one obtains immediately that the efficiency of
Bob’s detector must be above the threshold

 �B > �th
B �

1

1�Q=MA
(5)

in order to close the detection loophole. For any given
state, the measurement settings and Bob’s output in case
of no detection must be chosen as to maximize jQ=MAj.
Note that MA � L � 0, because the events where only
Alice’s detector clicks never violate the Bell inequality.

Consider first pure states. For the maximally entangled
state, one obtains �th

B �
1��
2
p 	 70:7% for the CHSH in-

equality and �th
B �

2
3 	 66:7% for the I3322 inequality

(the settings are those that achieve Q � 1
4 [23], and in the

absence of detection Bob outputs 0 leading to MA � �
1
2 ).

Note that a LHV model is known, which reproduces the
correlations of the maximally entangled state under the
assumption�A � 1 and�B � 50% [25]; it is an interesting
open question to close this gap by finding either a better
Bell-type inequality, or a better LHV model.

For pure nonmaximally entangled states j �i �
cos�j00i � sin�j11i, we performed a numerical minimiza-
tion of �th

B : we find that �th
B decreases with decreasing �

both for CHSH and I3322, as shown in Fig. 1 (thick lines), in
analogy with Eberhard’s result [14]. The optimal settings
can always be found to lie in the (x; z) plane of the Bloch
sphere, i.e., Ai � cos��i��z � sin��i��x and Bj �

cos��j��z � sin��j��x. In the case of no detection, we
found that it is optimal for Bob to output always 0; note
that in this case,MA � P�A1� � 1 � 1

2 �h �jA1 
 1j �i �
1� for both inequalities we consider here, CHSH and I3322.

In the limit of weakly entangled states (�! 0), one finds
�th
B ! 50% for CHSH and �th

B ! �43% for I3322 (see
Fig. 1). This is our main result. It is remarkable that the
detection loophole can in principle be closed with �B <
50%. Though we could not find an analytical expression
for the optimal settings as a function of �, we provide a
numerical example: for � � �

100 , I3322 gives �th
B ’ 43:3%

(Q ’ 0:0013 and MA ’ �0:001) for the optimal settings
�0 � �0:0012�, �1 � 0:1331�, �2 � 0:5494�, �0 �
0:0101�, �1 � �0:0038�, and �2 � �0:0924�.

We have seen that �th
B decreases with the degree of

entanglement for pure states. However, the violation of
the inequality decreases as well. It is therefore important
to study the effect of noise. We consider two models of
noise. The first is background noise as in Ref. [14]: Alice
and Bob share a state of the form
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 �AB � �1� p�j �ih �j � p
1

4
: (6)

For � � �
4 , the state (6) is the Werner state. The threshold

efficiency for I3322 as a function of � is shown in Fig. 1
(thin full lines). As expected, when � decreases, the thresh-
old efficiency reaches a minimum: for less entangled states
the violation of the inequality is rapidly overcome by the
noise. In Fig. 2, one sees that the I3322 inequality can
tolerate lower efficiencies than the CHSH inequality for
p & 6%.

Another noise model, probably more relevant for experi-
ments, supposes that Alice’s and Bob’s detectors have a
certain probability of error, "Ad and "Bd , e.g., due to dark
counts in the case of photon detection. The statistics are
then described by the state

 �AB � �1� "Ad ��1� "
B
d �j �ih �j � "

A
d

�
1

2

 �B

�

� "Bd

�
�A 


1

2

�
� "Ad"

B
d

1

4
; (7)

where �A � TrBj �ih �j and �B � TrAj �ih �j are the
reduced states of Alice and Bob. In the recent atom-photon
experiment done in Munich [20], the atom measurement
has �A 	 1 and "Ad 	 5%, whereas the photon measure-
ment is much less efficient but also less noisy. In the light
of this, we focus for definiteness on the case �A � 1 and
"Bd � 0. Again, the computed threshold efficiency as a
function of � is shown in Fig. 1 (thin dashed lines). The
behavior is qualitatively the same as for the background
noise, but the threshold efficiencies are lower. We have also
found that I3322 can tolerate higher error rates than CHSH

as soon as �B < 75%. Note that for both noise models, the
optimal settings can be found to lie in the (x; z) plane of the
Bloch sphere and that the optimal strategy for Bob in the
case of no detection is to output always 0.

Experimental feasibility.—Atom-photon entanglement
has been demonstrated both with Cd ions in an asymmetric
quadrupole trap [21,22] and with Rb atoms in an optical
dipole trap [20]. Nonmaximally entangled atom-photon
states were already created in Ref. [21]. The overall photon
detection efficiency is very low in these experiments,
mostly due to inefficient photon collection. The collection
efficiency could be brought to the required level by placing
the atom inside a high-finesse cavity. For example,
Ref. [26] demonstrated coupling of a trapped ion to a
high-finesse cavity and achieved � � 0:51, where � is
the fraction of spontaneously emitted photons that are
emitted into the cavity mode. The experimental conditions
in Ref. [27] correspond to � very close to 1. In real experi-
ments there are other sources of loss, such as propagation
losses and detector inefficiency. However, detection effi-
ciencies of order 90% have already been achieved [28], and
propagation losses can be kept small for moderate dis-
tances (see below). Overall, the perspective for closing
the detection loophole for two well-separated systems
seems excellent using atom-photon implementations.

Performing a loophole-free Bell experiment requires
enforcing locality of the measurements [4,5] in addition
to closing the detection loophole. The measurement of the
atomic state, which is typically based on detecting fluores-
cence from a cycling transition, is relatively slow. As a
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FIG. 2 (color online). Minimal detection efficiency �B re-
quired for a given noise power. The curves for the symmetric
case, �A � �B, are also plotted, the curve for CHSH being
Eberhard’s result. Though CHSH provides a smaller threshold
efficiency for any noise power than I3322 in the symmetric case,
I3322 can tolerate smaller efficiencies than CHSH when p < 6%
and �A � 1. This is probably due to the fact that inequality I3322

is asymmetric, contrary to CHSH.

 

0 0.05 0.1 0.15 0.2 0.25
0.4

0.5

0.6

0.7

0.8

0.9

1

θ / π

η B

 

 

10 %

5 %

1 %

0.1 %

0.43

0.67

0.71

FIG. 1 (color online). Numerical optimization of the threshold
efficiency �th

B as a function of �. Thick lines: results for pure
states, for CHSH (dashed-dotted line) and I3322 (full line). For
I3322 the threshold efficiency �th

B goes down to�43% in the limit
of weakly entangled states. Thin full lines: I3322 with background
noise, i.e., states (6); thin dashed lines: I3322 with detection
errors, i.e., states (7); with error value for both.
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consequence, enforcing locality in an experiment with
atom-photon pairs requires a large separation between
the two detection stations for the atom and the photon.
For example, Ref. [18] estimated that for trapped Ca ions
the atomic measurement could be performed in 30 �s,
assuming that 2% of the photons from the cycling transi-
tion are collected, leading to a required separation of order
5 km for an asymmetric configuration [29]. For distances
of this order propagation losses for the photon become
significant. For example, 5 km of telecom fiber have a
transmission of order 80% for the optimal wavelength
range around 1:5 �m, but only of order 30% for wave-
lengths around 850 nm [30]. Provided that one can achieve
fast atomic measurements, a photon wavelength that mini-
mizes propagation losses, and highly efficient photon de-
tection, a loophole-free Bell experiment might be possible
with asymmetric atom-photon systems.

Conclusions and outlook.—We discussed the detection
loophole in asymmetric Bell tests. In particular, we showed
that, for the inequality I3322, a minimal detection efficiency
of �B � 43% can be tolerated (for �A � 1), considering
nonmaximally entangled states. For maximally entangled
states, the threshold efficiency is �B � 66:7%. For these
states the LHV model of Ref. [25], based on the detection
loophole, provides a lower bound for the threshold effi-
ciency �B > 50%. It is an interesting question wether this
bound can be reached by considering other Bell inequal-
ities. We have found no improvement using the following
inequalities: I4422 and I1;2;3

3422 from Ref. [23], A5 from
Ref. [31], and AS1;2 from Ref. [32]. From an experimental
point of view, we have argued that atom-photon entangle-
ment seems promising for closing the detection loophole
for well-separated systems. We also briefly discussed the
experimental requirements for realizing a loophole-free
Bell experiment using an asymmetric approach.
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Note added in proof.—While finishing the writing of this
manuscript, we became aware that the results presented
here about the CHSH inequality were independently de-
rived by Cabello and Larsson [33].
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