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We study the entanglement between a qubit and its environment from the spin-boson model with Ohmic
dissipation. Through a mapping to the anisotropic Kondo model, we derive the entropy of entanglement of
the spin E��;�; h�, where � is the dissipation strength, � is the tunneling amplitude between qubit states,
and h is the level asymmetry. For 1� �� �=!c and ��; h� � !c, we show that the Kondo energy scale
TK controls the entanglement between the qubit and the bosonic environment (!c is a high-energy cutoff).
For h� TK, the disentanglement proceeds as �h=TK�2; for h� TK, E vanishes as �TK=h�2�2�, up to a
logarithmic correction. For a given h, the maximum entanglement occurs at a value of � which lies in the
crossover regime h� TK . We emphasize the possibility of measuring this entanglement using charge
qubits subject to electromagnetic noise.
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The concept of quantum entropy appears in multiple
contexts, from black hole physics [1] to quantum informa-
tion theory, where it measures the entanglement of quan-
tum states [2]. Prompted by the link between entanglement
and quantum criticality [3], a number of researchers have
begun to study the entanglement entropy of condensed
matter systems. In this Letter, we employ the spin-boson
model [4,5] to describe the entanglement between a qubit
(two-level system) and an infinite collection of bosons.
With an Ohmic bosonic bath, the spin-boson model under-
goes a quantum phase transition of Kosterlitz-Thouless
type when �� 1 � �=!c, where � is the strength of the
coupling to the environment, � is the tunneling amplitude
between the qubit states, and !c � � is an ultraviolet
cutoff [6,7]. When the two levels of the qubit are degener-
ate, the entanglement between the qubit and the bosons is
discontinuous at this transition [8,9]. We report the first
rigorous analytical results for the entanglement (quan-
tum entropy) in the entangled regime 1� �� �=!c.

We exploit a mapping between the spin-boson model
and the anisotropic Kondo model; our results follow from
the Bethe ansatz solution of the equivalent interacting
resonant level model [10,11]. We show that the entropy
of entanglement (E) of the qubit with the environment is
controlled by the Kondo energy scale TK, which governs
the low-energy regime of the Kondo problem (a strongly
correlated Fermi liquid). We derive simple universal scal-
ing forms for the entanglement in the limits h� TK and
h� TK (Fig. 1), where h� !c is the level asymmetry
between qubit states. We also observe that, for a given h, E
is maximized at a value of � which lies in the crossover
regime h� TK. While the spin-boson model describes
many systems of experimental interest [5], the example
most pertinent to this work is a noisy charge qubit, built out
of Josephson junctions [12] or metallic islands [11,13],
where the environment embodies the electromagnetic
noise stemming from Ohmic resistors in the external cir-

cuit [14]. When the qubit and the leads form a ring, the
entropy of entanglement can be constructed from two
measurable quantities: the persistent current in the ring
[11,15] and the charge on the dot [16].

Model and entanglement entropy.—The Hamiltonian for
the spin-boson model with a level asymmetry h is
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where �x and �z are Pauli matrices and � is the tunneling
amplitude between the states with �z � 	1. Hosc is the
Hamiltonian of an infinite number of harmonic oscillators
with frequencies f!qg, which couple to the spin degree of
freedom via the coupling constants f�qg. We assume an
Ohmic heat bath with the spectral function J�!� 

�
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q��!q �!� � 2��!, !� !c. The dimension-

less parameter � measures the strength of the dissipation.
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FIG. 1 (color online). Summary of our results. The shaded
region depicts the crossover regime h� TK. We compute TK
from the universal scaling function of Ref. [21], with � �
0:1!c; for the sake of clarity, we choose a large value of �.
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For h � 0 and �=!c � 1, this model has a quantum
critical line along the separatrix �� 1 � �=!c [6]. The
region �� 1> �=!c is a broken-symmetry phase (the
‘‘localized’’ phase) where � renormalizes to zero and
limh!0h�zi � 0; here, the bosons disentangle from the
spin [8]. The ‘‘delocalized’’ phase (�� 1< �=!c) is
divided into two regimes by the separatrix 1� � �
�=!c. The localized phase can be treated by perturbation
theory in �, but in the delocalized phase, this works only
when h is large [11]. We focus on the regime 1� �>
�=!c, where the entanglement between the qubit and the
environment leads to a renormalized �ren < � [6].

At zero temperature, the entanglement between two
members (A and B) of a bipartite system in the pure state
j i is given by the von Neumann entropy E �
�Tr�Alog2�A � �Tr�Blog2�B, �A�B� � TrB�A�j ih j
[2]. If j i is the ground state of HSB and A is the qubit;

this results in E � �p�log2p� � p�log2p�, where p	 �

�1	
�����������������������������
h�xi2 � h�zi2

q
�=2; h�yi � 0 because HSB is invari-

ant under �y ! ��y. We present exact results for
E��;�; h� in the regime 1� �� �=!c. Although E is
defined at zero temperature, it exhibits universality that is
reminiscent of thermodynamic quantities like susceptibil-
ity and specific heat [17]. Recent work on the impurity
entanglement in the isotropic Kondo model has empha-
sized universality in a similar vein [18].

Mapping onto the anisotropic Kondo model.—Our re-
sults follow from a well-known mapping between HSB and
the anisotropic Kondo model [19], defined as

 HAKM � Hkin �
J?
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This Hamiltonian describes the anisotropic exchange in-
teraction between conduction electrons (labeled by the
one-dimensional wave number k and spin � � " , # )
and a spin-1=2 impurity. Hkin is the kinetic energy of the
electrons. HAKM and HSB are equivalent if we take
�=!c ! �J?, �! �1� 2�=��2, and h! h, where � is
the density of states per spin of the electrons and � �
tan�1����Jz=4� is the phase shift they acquire from scat-
tering off the impurity [20]. The region 1� �> �=!c
corresponds to the antiferromagnetic Kondo model, while
�� 1> �=!c corresponds to the ferromagnetic Kondo
model. The equivalence between HSB and HAKM can be
established via bosonization; a ‘‘refermionization’’ of HSB

then leads to an interacting resonant level Hamiltonian [20]
which has been solved by Bethe ansatz [10]. The low-
energy physics of the regime 1� �� �=!c is controlled
by the Kondo scale TK � ���=D��=�1��� � �ren, where D
is a high-energy cutoff. D and !c are different, but their
relationship is fixed—see, e.g., Ref. [11]. Note that a more
general expression for TK can be obtained from the renor-

malization group equations for � and �=!c [6,21]; in the
limit 1� �! �=!c, TK assumes the exponential form of
the isotropic, antiferromagnetic Kondo model (Fig. 1).

Generalities.—It is clear from Eq. (1) that h�xi �
�2@Eg=@� and h�zi � 2@Eg=@h, where Eg is the ground
state energy of HSB. Since HSB and HAKM are related by a
unitary transformation, they have the same ground state
energy (up to an unimportant constant). The field h couples
directly to the spin in both models, so we have hSzi �
h�zi=2. However, a similar relationship does not hold
between hSxi and h�xi, and therefore E does not measure
the entanglement between the Kondo impurity and the
conduction band. At � � 0, the qubit is decoupled from
the environment; thus, h�xi � �=

������������������
h2 ��2
p

and h�zi �
�h=

������������������
h2 ��2
p

. With p� � 1 and p� � 0, we have E �
0 for all values of � and h. But when �! 1�, for h � 0
and �=!c ! 0, the system is equivalent to the antiferro-
magnetic SU(2) Kondo model with J? � Jz and h�xi �
h�zi � 0, so we expect E! 1, in agreement with previous
Numerical Renormalization Group (NRG) results [9]. On
the other hand, we must have E! 0 at large h, since the
qubit is localized in the state with h�zi � �1 and h�xi �
0. We argue that the Kondo mapping defined in Eq. (2)
allows us to examine how E interpolates between these
limits and to explore the phase diagram (�, h).

Toulouse limit.—First, we focus on the point � � 1=2,
which corresponds to the Toulouse limit of the Kondo
model [5,20]. The resonant level is noninteracting in this
limit [20], so the ground state energy is simply that of a
level at energy h with width �TK. We find

 h�zi��1=2 � �
2

�
tan�1

�
h
TK

�
; (3)

 h�xi��1=2 � �
2

�

������
TK
D

s �
2� ln

�
h2 � T2

K

D2

��
: (4)

First, consider the limit h� TK, where h�zi ! ��2=���
�h=TK� and h�xi ! ��4=��

�������������
TK=D

p
1� ln�TK=D��. The

result for h�zi is consistent with the Kondo ground state,
where S is fully screened and hSzi / h=TK at small h. Since
both h�xi and h�zi are small, the system is close to maxi-
mal entanglement:

 lim
h�TK

E�1=2;�; h� � E�1=2;�; 0� �
2

�2 ln2

�
h
TK

�
2
; (5)

where E�1=2;�; 0� � 1� 8
�2 ln2

TK
D 1� ln�TKD ��

2. We have
argued that E�h � 0� ! 1 as �! 1�; since the correction
is already small at � � 1=2, we anticipate that E varies
smoothly from � � 1=2 to � � 1 at h � 0. The second
term in Eq. (5) is a universal function of h=TK, with a
quadratic dependence on energy that arises from the
Kondo Fermi liquid behavior of h�zi. In the opposite limit
h� TK, we find that h�zi ! �1� 2TK=��h� and h�xi !
��4=��

�������������
TK=D

p
ln�h=D�. Again, the leading h-dependence

of E has a universal form dictated by h�zi
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� ln2

�
TK
h

�
ln
�
h
TK

�
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Because of the logarithmic correction, E approaches zero
slowly at large h. Plots of E over the full range of h are
shown in Fig. 2 for several values of TK.

Away from � � 1=2.—The Bethe ansatz solution of the
interacting resonant level model provides exact solutions
for h�zi and h�xi in the delocalized realm 1� �� �=!c
[10,11]. While the general expressions are quite compli-
cated, we derive simple scaling forms for the entanglement
entropy in the limits h� TK and h� TK.

For h� TK, we find

 lim
h�TK

h�zi � �
2eb=�2�2������

�
p

�1� 1=�2� 2���
�1� �=�2� 2���

�
h
TK

�
; (7)

where b � � ln�� �1� �� ln�1� ��. Again we have
h�zi / h=TK at small h, in keeping with the Kondo ground
state. The leading h-dependence of h�xi is of order h2 and
therefore negligible, which leaves

 lim
h�TK

h�xi �
1

2�� 1

�

!c
� C1���

TK
�
; (8)

with C1��� �
e�b=�2�2�����
�
p
�1���

�1�1=�2�2���
�1��=�2�2��� . As �! 0, TK ! �

and C1�0� � 1, so we recover the exact result h�xi��h�0 �
1 up to a correction of order �=!c. This ensures E! 0 for
�! 0. As we turn on the coupling to the environment, we
introduce some uncertainty in the direction of the spin and
h�xi progressively decreases. For �< 1=2, the monotonic
decrease of TK=� dominates. For �> 1=2, the first term in
Eq. (8) dominates and we have h�xi ��=!c � 0. The
smallness of h�xi in this regime reflects the loss of coherent
Rabi oscillations [5] that occurs at the dynamical crossover
� � 1=2. Note that h�xi remains analytic: for �! 1=2,
we take C1��� � �4=����1� 2�� ! 4=��1� 2��� and
use the identity D�� � 1=2� � 4!c=� to find h�xi !
��4=��

�������������
TK=D

p
ln�TK=D�, in agreement with Eq. (4).

Now we focus on the region away from � � 0, where
TK � � and the system is strongly entangled at h � 0.

Here we can generalize Eq. (5):

 lim
h�TK��

E��;�; h� � E��;�; 0� � k1���
�
h
TK

�
2
: (9)

The coefficient k1��� (Fig. 3) is given by

 k1��� �
2eb=�1���

� ln2

�
�1� 1=�2� 2���
�1� �=�2� 2���

�
2
; (10)

and E��;�; 0� � 1� 1
2 ln2 �

1
2��1

�
!c
� C1���

TK
� �

2. The
�h=TK�2 scaling, which is a feature of the Fermi liquid
fixed point, persists for� � 1=2. Note that the scaling with
h=TK is determined entirely by h�zi, while the (nonuni-
versal) contribution at h � 0 arises from h�xi. We also ob-
serve that E�h � 0� saturates at maximum entropy for �>
1=2, where the leading correction is of order ��=!c�

2. The
plateau for �> 1=2 demonstrates a link between entangle-
ment and decoherence. For �! 0, the h-dependence is
still quadratic, but with a nonuniversal prefactor.

For h� TK, we have

 lim
h�TK

h�zi � �1�
�
1� 2�

2
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(11)
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where C2��� �
2e�b���
�
p
�1�2��

��3=2���
��1��� . In the limit �! 1=2,

h�xi contains two additional terms which conspire with
the other terms to produce the logarithm of Eq. (4); we do
not write them explicitly because they cancel each other for
� � 1=2. In the regime TK � h� �,we find

 lim
TK�h��

E��;�; h� � k2��� ln
�
h
TK

��
TK
h

�
2�2�

; (13)

where the prefactor (Fig. 3) is given by

 k2��� �
�1� ��e�b����

�
p

ln2

��3=2� ��
��1� ��

: (14)

As in Eq. (6), the universal scaling function follows from
the high-field response of h�zi.

In the localized phase, we obtain h�zi � �1 and
h�xi � 0—and therefore E � 0—for infinitesimal h.
Since dissipation localizes the spin in the ‘‘down’’ state
for h � 0�, we do not expect the entropy to depend
strongly on external field; so it makes sense that k2 ! 0
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FIG. 2 (color online). Entropy E�� � 1=2; h�, plotted on a
logarithmic scale for five values of TK � �2=D; from top to
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solid lines show the asymptotes found in Eqs. (5) and (6).
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as �! 1. Deep in the localized phase, we find from
perturbation theory [11] that E����=!c�

2 ln��=!c� to
leading order for all h (Fig. 1). As we approach the critical
line �� 1 � �=!c from the localized side, this behavior
is replaced by E����=!c� ln��=!c� [8].

We use the full solutions [10,11] for h�xi and h�zi to plot
E versus � for various h in Fig. 4. The entropy increases
monotonically when h � 0: it is linear in � near � � 0,
and it saturates at E � 1 for �> 1=2, as discussed above.
As h increases from zero, E exhibits a maximum at pro-
gressively smaller values of �, in agreement with previous
NRG results [9]. In our view, this maximum signifies the
crossover h� TK (Fig. 4). If h � 0, the entropy E is driven
to zero by dissipation, and we observe instead a sharp
nonanalyticity at the phase transition [8].

Experiments.—An important open question in the study
of quantum entanglement is whether it can be measured
experimentally. The model considered here is realized in
noisy charge qubits, composed either of a large metallic
dot [11,13] (the single electron box) or a superconducting
island [12] (the Cooper pair box). The gate voltage controls
the level asymmetry h, and � corresponds to the tunneling
amplitude between the dot and the lead or the Josephson
coupling energy of the junction. If the gate voltage source
is placed in series with an external impedance, voltage
fluctuations will give rise to dissipation even at zero tem-
perature [22]. The parameter � can be varied in situ when a
two-dimensional electron gas acts as the Ohmic dissipative
environment [14]. Here, E depends only on h�xi and h�zi,
so it can be constructed from physical observables. While
these quantities would obviously be measured at finite
temperature, we assume it is possible to recover the ground
state density matrix by extrapolating them to their zero-
temperature values. Charge measurements [16] yield the
quantity h�zi, which represents the occupation of the dot or
island. In a ring geometry, the application of a magnetic
flux generates a persistent current that is proportional to the
observable h�xi [11]. Another promising system is the
atomic quantum dot, which also permits control of the
coupling between the dot and the bosonic reservoir [23].

Conclusion.—We have provided quantitative predic-
tions for the entropy of entanglement of the spin in the
spin-boson model. This entropy exhibits universal behav-
ior in the delocalized phase, governed by the Fermi liquid
fixed point of the equivalent anisotropic Kondo system. We
have also described an experimental setup capable of test-
ing our predictions; such measurements would provide an
empirical proof of the existence of entanglement entropy.
Although the presence of dissipation in charge qubits
makes them unlikely candidates for a functioning quantum
computer, they can be used to explore links between quan-
tum entanglement, decoherence, and quantum phase tran-
sitions. This work might be extended to two noisy qubits.
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FIG. 4 (color online). E��;� � 0:01!c; h� versus � at several
values of h. At h � 0, we check that E / � in the limit �! 0.
The arrow marks the value of � at which TK � 0:001!c; we see
that for h � 0:001!c, E is maximized near this point.

PRL 98, 220401 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
1 JUNE 2007

220401-4


