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Liquid crystals in two dimensions undergo a first-order isotropic-to-quasi-nematic transition, provided
the particle interactions are sufficiently “‘sharp and narrow.” This implies phase coexistence between
isotropic and quasi-nematic domains, separated by interfaces. The corresponding line tension is deter-
mined and shown to be very small, giving rise to strong interface fluctuations. When the interactions are
no longer “sharp and narrow,” the transition becomes continuous, with nonuniversal critical behavior
obeying hyperscaling and approximately resembling the two-dimensional Potts model.
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Fluids consisting of elongated molecules can form ne-
matic phases. In the nematic phase, the molecules are
aligned, which distinguishes it from the isotropic phase,
where the molecular orientations are random. The nematic
phase is the standard example of a liquid crystal. Con-
sequently, its properties are of fundamental importance.
The nematic phase can be prepared in several ways. In
thermotropic liquid crystals, the isotropic-to-nematic ({-N)
transition is temperature driven: starting in the high-
temperature isotropic phase, the nematic phase is reached
by lowering the temperature. The Lebwohl-Lasher (LL)
model [1] provides a convenient theoretical framework. In

this model, a unit vector c?,- is assigned to each site i of a

lattice, where C_l;i represents the orientation of the molecule
at the i-th lattice site. The molecules interact with
Hamiltonian

H = —eSld;-djl, (1)
G.j)

where the sum is over nearest neighbors (factors of kzT are
absorbed in the coupling constant €, with T the tempera-
ture, and kg the Boltzmann constant). In Ref. [1], Eq. (1) is
studied in d = 3 dimensions with p = 2. At low enough
temperature, Eq. (1) then undergoes a first-order transition
from an isotropic phase to a nematic phase. Nematic
phases also occur in lyotropic systems, where density
drives the /-N transition. Onsager has shown that infinitely
slender rods in d = 3 dimensions also undergo a first-order
I-N transition, at sufficiently high density [2].

In d = 3 dimensions, the /-N transition is well under-
stood. In contrast, the two-dimensional case, which is the
topic of this Letter, is more controversial. More precisely,
we shall consider Eq. (1) in d = 2 spatial dimensions,
using two-component unit vectors c_i)i. For p =2, Eq. (1)
then becomes the XY model [3], and a nematic phase with
long-range order is ruled out by the Mermin-Wagner (MW)
theorem [4]. The two-dimensional XY model and its vari-
ants were thought to be without a phase transition for a
long time, until Kosterlitz and Thouless (KT) proved that a
phase transition does occur, and clarified its topological
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nature [5]. The KT transition is one from a (high-
temperature) isotropic phase, with exponential decay of
the angular correlations, to a (low-temperature) quasi-
nematic phase, with power-law decay of the correlations.
In the XY model, the KT transition is continuous. By
lowering the temperature, starting in the isotropic phase,
the correlation length grows exponentially, until it diverges
at the transition temperature, where the quasi-nematic
phase sets in. Since the quasi-nematic phase has infinite
correlation length, it is a critical phase. Consequently, the
order parameter A and the susceptibility y scale as

Ao L7HB/7, x < L7, )

with L the system size; 3, v, and v are the critical ex-
ponents of the order parameter, susceptibility, and correla-
tion length, respectively. Since the correlation length
diverges exponentially, the exponents themselves are un-
defined. However, exponent ratios are still defined [3,6],
via Eq. (2).

Since the XY model and the LL model are similar, the
I-N transition in two-dimensional liquid crystals is often
assumed to be of the conventional KT type. Clearly, for
Eq. (1) with p = 2 this is justified. If one then accepts a
well-defined universality class for two-dimensional liquid
crystals, it seems reasonable that Eq. (1) for arbitrary p =
2, and indeed also lyotropic liquid crystals, are all qualita-
tively similar. The purpose of this Letter is to demonstrate
that the /-N transition in d = 2 is far more subtle. Our
results are inspired by generalized XY modelsind = 2 [7],
for which it has been proved that the KT transition can
become first-order [8]. Since Eq. (1) can be mapped onto
the generalized XY model, using (cosx)?” =27 7(1 +
cos(2x))?, the consequences of this result should be rele-
vant for liquid crystals as well. Indeed, for liquid crystals
interacting via Eq. (1) with large p, a first-order transition
is found, including a phase coexistence region, character-
ized by a finite line tension. For smaller p, nonuniversal
critical behavior is found, with exponent ratios that vary
continuously with p, while obeying hyperscaling. In-
terestingly, the variation of the exponent ratios we observe
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is qualitatively similar to that of the d = 2 Potts model [9].
Finally, we consider an off-lattice liquid crystal, which
turns out to also exhibit nonuniversal critical behavior.
We begin our investigation by considering Eq. (1) in the
limit of large p, such that the nearest neighbor interaction
is “sharp and narrow.” In other words, two neighboring
molecules lower the energy only when they are closely
aligned; otherwise, the interaction quickly vanishes, which
mimics the Kronecker-6 Hamiltonian of the Potts model
[9]. In fact, for large p, Eq. (1) qualitatively resembles the
g-state Potts model, with ¢ < p'/2 [7]. The g-state Potts
model in d = 2 exhibits a first-order phase transition when
g > 4, and so one may hope to see a similar transition in
Eq. (1) when p becomes large. To this end, we have
Monte Carlo simulated Eq. (1) with p = 1000, on a peri-
odic L X L lattice. The simulations are performed using
standard single-particle Metropolis moves, combined with
a biased sampling scheme [10], and histogram reweighting
[11]. Evidence of a first-order transition is obtained from
the distribution P(E), defined as the probability to observe
the energy E during the simulation [12]. For € = 2.5 and
p = 1000, we find that P(E) becomes bimodal, see
Fig. 1(a). The peak at low energy (I) reflects the quasi-
nematic phase, the peak at high energy (II) the isotropic
phase, and the region in between the peaks corresponds to
phase coexistence (the latter is characteristic of first-order
transitions). Simulation snapshots obtained in the region
where P(E) attains its minimum strikingly confirm phase
coexistence, see Fig. 1(b). Here, a rectangular lattice was
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FIG. 1. Evidence of a first-order phase transition in the ther-
motropic liquid crystal of Eq. (1) with p = 1000 at € = 2.5.
(a) Scaled and shifted logarithm of P(E) for L = 10 (solid curve)
and L = 15 (dashed curve); A reflects the line tension of the I-N
interface. (b) Typical snapshot obtained in the coexistence
region.

used, such that the interfaces form parallel to the short edge
of the lattice, since this minimizes the total amount of
interface in the system. Note that the coexistence is be-
tween an isotropic and a quasi-nematic phase: both phases
lack long-range order in the thermodynamic limit. The
decay of nematic order with system size in the quasi-
nematic phase may, however, be very slow, giving the
impression of a true nematic phase [13]. The interfaces
in Fig. 1(b) are not flat and appear to be decorated with
capillary waves. Our results even allow for an estimate of
the line tension A between the coexisting domains. To this
end, note that we have plotted the logarithm of P(E)
divided by 2L in Fig. 1(a), with the minimum between
the peaks shifted to zero. The height of the peaks then
reflects the line tension [14]. The results of both system
sizes are remarkably consistent and yield A = 0.3kgT per
lattice spacing.

Next, we investigate what happens when the interaction
of Eq. (1) is no longer “sharp and narrow.” Clearly, for
p = 2in Eq. (1), critical behavior of the XY model should
be detected. Therefore, somewhere in the interval 2 < p <
1000, a crossover to first-order behavior must take place.
We have performed additional simulations of Eq. (1), and
find that for p < 50, bimodal energy distributions P(E) can
no longer be identified. In fact, the case p = 50 is near the
borderline: for small systems, bimodal energy distributions
do occur, at € = 1.86, but the free energy barrier AF =
2L A decreases with L, and so the bimodal structure does
not survive the thermodynamic limit. Following Ref. [15],
we conclude that the transition in Eq. (1) is no longer first-
order when p = 50. Interestingly, a similar phenomenon
also occurs in the two-dimensional g-state Potts model [9].
Here, g = 4 is the borderline case: when g = 4, the Potts
model no longer exhibits a first-order phase transition.
Instead, the transition becomes critical, with critical ex-
ponents that depend on ¢. If we accept that p in Eq. (1) is
analogous to the number of Potts states g, then p = 50
roughly corresponds to ¢ = 4. It then becomes of interest
to investigate the critical behavior of Eq. (1) in the regime
p = 50. If the analogy to the Potts model remains valid,
critical exponents that depend on p are to be expected.

To this end, we now consider Eq. (1) using p = 10.
Since P(E) is no longer bimodal, a different quantity
must be used to locate the phase transition. For liquid
crystals, a natural choice is the nematic order parameter
S, defined as the maximum eigenvalue of the orientational
tensor Q5 = SV (2d;od;g — 84p), With d;, the a com-
ponent (& = x, y) of the orientation c?i of molecule i, 0,p
the Kronecker delta, and N the total number of particles.
For disordered phases, S will be small; for ordered phases
with strong alignment, S will be larger. We simulate Eq. (1)
as before, and measure the distribution P(S), defined as the
probability to observe the nematic order parameter S. First
evidence of a phase transition is provided in Fig. 2(a).
Shown is W = InP(S) for several values of €. The striking
feature of Fig. 2(a) is the formation of a “’kink” in W, when
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FIG. 2. Nematic order parameter distributions W = InP(S) of
Eq. (1) for p = L = 10. (a) W in the absence of JS, for several
€, including the “common tangent” construction for € = 2.5.
(b) Bimodal form of W for € = 2.5, in the presence of JS,
including the definition of AK and A.

€ is sufficiently large. It then becomes possible to perform
a ‘“‘common tangent’” construction. We thus find a rather
special phase transition, characterized by a change in the
shape of W. The transition is one from a high-temperature
(low €) phase, where ‘““common tangents” in W do not
occur, to a low-temperature (high €) phase, where they do.
We note in passing that the probability distribution of the
magnetization in the two-dimensional XY model shows
similar behavior [6]. In other words, the formation of a
kink does not imply long-range order in Eq. (1), which
indeed is ruled out by the MW theorem [4].

To accurately locate the value of € above which the
kink in W begins to form, it is convenient to add a term

JS to the Hamiltonian, such that Eq. (1) becomes H =
—€> j>|c_l) i d |7+ JS, with S the nematic order parame-
ter, and coupling constant J. The effect of J >0 is to
penalize the nematic phase. Provided a kink is present,
W can be cast into bimodal form. Figure 2(b) gives an
example for € = 2.5. Here, J was tuned using P;.y(S) =
P;_(S) exp(—JS), such that the two peaks in P(S) were of
equal area [16]. The magnitude of the kink now shows up
as a barrier, marked AK in Fig. 2(b). To locate the tran-
sition, we use the finite size scaling approach of Ref. [15].
To this end, AK is measured as a function of € and L. The
result is shown in Fig. 3(b). For small €, AK decreases with
system size, implying that the kink does not survive the
thermodynamic limit. For large e, AK increases with
system size, in which case the kink survives. For inter-
mediate €, AK remains roughly constant, implying that the
transition from the low-€e “kinkless” phase, to the high-€
kink phase, passes through a critical point [15], at € =
1.64. Further confirmation is obtained from the Binder

FIG. 3. Finite size scaling analysis of Eq. (1) with p = 10.
(a) Uy as a function of e for several system sizes L. The
intersection point yields an estimate of €. (b) AK as a function
of 1/L, for € = 1.70; 1.66; 1.64; 1.62; 1.60 (top to bottom).

cumulant U, = (m?)?/{m*) of the bimodal distributions,
with m = S — (S), see Fig. 3(a). At a critical point, the
cumulant becomes L-independent [17]. The sharp inter-
section point in Fig. 3(a) provides strong evidence that
Eq. (1) indeed becomes critical. For p = 10, criticality is
obtained at €, = 1.637, in excellent agreement with the
previous estimate.

Having established the critical value of €, critical ex-
ponent ratios can be measured in several ways. For ex-
ample, B/v is obtained by fitting the decay of the order
parameter A at €, to Eq. (2), with A defined in Fig. 2(b).
Similarly, y/v follows from the finite size behavior of the
susceptibility y = ((S%) — (S)?)/L? at €, see Eq. (2). In
addition, exponent ratios can be obtained using the method
of Loison [18]. We find that both techniques are remark-
ably consistent: for p = 10 in Eq. (1), we obtain B/v =
0.175 and y/v = 1.645. Note that these ratios strikingly
obey the hyperscaling relation y/v +28/v = d. By re-
peating the above analysis for different values of p, the
result of Fig. 4 is obtained. Shown are €., (a), 8/v (b), and
v/ v (c), as a function of p. We first note that the exponent
ratios for p # 10 also obey hyperscaling. This result is
important because it demonstrates the consistency of our
data and provides additional confirmation that Eq. (1), for
small p, indeed becomes critical at the transition point. An
even more striking feature is that the exponent ratios
depend on p. Such nonuniversal critical behavior may
seem surprising, but has been observed before in different
systems [19]. Indeed, based on the analogy to the Potts
model, p-dependent critical behavior was already antici-
pated. In fact, the nonmonotonic variation of the exponent
ratios we observe in Fig. 4 is also characteristic of the
g-state Potts model. In this case, the exponent ratios as-
sume their extrema at g = 3.33. Our results thus suggest
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FIG. 4. Critical properties of Eq. (1) as a function of p.

that Eq. (1) for p ~ 10-20 roughly corresponds toa g ~ 3
Potts model. The actual exponent values of the Potts
model, however, do not agree with those of Fig. 4. In other
words, the analogy between Eq. (1) and the Potts model is
not exact. Note that the rotation symmetry of Eq. (1) is not
the permutation symmetry of the Potts model. An exact
correspondence is therefore not to be expected. This is also
manifested by the behavior of €, see Fig. 4(a). Whereas
the increase of €. with p for large p is consistent with the
Potts model, the decrease at small p is not. In fact, for p =
2 in Eq. (1), we expect XY critical behavior to occur. As
Fig. 4(c) demonstrates, /v is indeed close to the XY value
7/4 [3] in that case.

We now consider an off-lattice liquid crystal, namely, a
fluid of soft rods. The rods are defined as rectangles, of
length [ and width w, capped at each end by a semicircle of
diameter w (we set [/w = 16, and [ will be the unit of
length). The rods interact via a repulsive pair potential,
whereby rod overlap is penalized with energy cost k = 2.
The rods are simulated in the grand-canonical ensemble,
i.e., at constant temperature 7, chemical potential w, and
system area A, while the number of particles N fluctuates.
We use a simulation square of size L X L, with periodic
boundary conditions. While for Eq. (1), a phase transition
occurs above a certain €, here that role is played by w. This
also implies that the analogue of energy in Eq. (1) becomes
the number of particles N, since w couples to N in the
grand-canonical ensemble. The probability distributions
P(S) and P(N) were measured for various w. We find
that bimodal distributions P(N) do nor occur, strongly
suggesting that a first-order transition is absent. In other
words, soft rods resemble Eq. (1) in the limit of small p.
Indeed, we find that InP(S) develops a kink when u
exceeds a critical value u.. For w > .., bimodal distri-
butions InP(S) can be realized, as in Fig. 2(b), by tuning J.
Finite size scaling confirms that the system becomes criti-

cal at the point where the kink first appears. For soft rods,
Mo = 1.985, B/v = 0.17, and y/v = 1.65 are obtained,
consistent with hyperscaling. By comparing to Fig. 4, we
conclude that soft rods resemble Eq. (1) with p ~ 10-20.

In summary, for a lattice liquid crystal with ““sharp and
narrow’’ interactions, the existence of a first-order transi-
tion was shown, including an estimate of the line tension
between the coexisting domains. The line tension is small,
giving rise to strong interface fluctuations. When the in-
teraction is no longer ‘“‘sharp and narrow,” the transition
becomes continuous. Liquid crystals then show nonuniver-
sal critical behavior, with exponent ratios that depend on
the “sharpness” of the interaction, but that do obey hyper-
scaling. In addition, the behavior of the exponent ratios
follows the Potts trend. For lattice liquid crystals, the
transition type can be selected using the parameter p in
Eq. (1). For off-lattice systems, such a parameter is not so
easily identified. In soft rods, the interaction is clearly not
“sharp and narrow”” enough to induce a first-order transi-
tion. It remains of interest to identify off-lattice interactions
that do facilitate first-order transitions in two-dimensional
liquid crystals. Possibly, this could be achieved using Gay-
Berne type potentials [20]. A different application could be
to use the present simulation methodology to study melting
in two dimensions. Such investigations are a topic for
future work.
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