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It is argued that the specific heat of N massless Dirac fermions in two spatial dimensions interacting
with 1=r Coulomb interactions is suppressed logarithmically relative to its noninteracting counterpart. The
(dimensionless) coefficient of the logarithm is calculated in a closed form in the leading order in large N
expansion, but to all orders in the effective fine structure constant, �F, a procedure which takes into
account finite temperature screening. This effect is expected to occur in a single-layer graphene embedded
in a dielectric medium. Its dependence on the dielectric constant is calculated analytically.
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Understanding properties of quantum matter confined to
two spatial dimensions has been at the forefront of theo-
retical physics [1]. The lowered dimensionality is believed
to increase the role of interactions and, together with
quantum statistics, lead to anomalies in various physical
observables [2–4].

In the case of Fermi-Dirac systems, the role of (short-
range) interactions has been studied in the pioneering work
of Landau [5]. What is now understood as the Fermi liquid
paradigm explains the low temperature properties of the
degenerate Fermi-Dirac systems as arising from a dilute
gas of weakly interacting quasiparticles whose quantum
numbers are the same as those of noninteracting fermions.
In this context, it is also well known that a degenerate
assembly of electrons with a rotationally invariant Fermi
surface, in either three or two spatial dimensions, interact-
ing with 1=r Coulomb interactions, can be described by the
Fermi liquid theory [6]. Ultimately, this is due to the ability
of the mobile carriers to screen the long-ranged interaction
beyond the distances of the order of the interelectron
separation. One of the most direct observable consequen-
ces for a metal is the linear temperature dependence of the
specific heat at asymptotically low temperatures, i.e.,
limT!0cV=T � � [7,8].

The situation is less clear in the case of a semimetal,
which can be thought of loosely as the Fermi surface
shrunk to a point. More precisely, in this case, a conduction
band and a valence band typically touch at a discrete set of
points with dispersion which vanishes linearly with the
wave number near each such point, being in a sense a
critical point between a metal and an insulator. If the
chemical potential lies at such a point of degeneracy, the
absence of the Fermi surface implies that, unlike in a metal,
the long-ranged interactions are screened only by ther-
mally excited carriers, with the screening length of the
order of the thermal length, @vF=kBT. For a typical
Fermi velocity �106 m=s, even at room temperature the
screening length can therefore be much longer than the
interatomic spacing. The effect of the Coulomb interac-

tions on 3D semimetals was investigated in Ref. [11] where
it was argued that, unlike in a metal, the Coulomb inter-
action causes the energy spectrum to differ from a purely
linear spectrum by a logarithmic factor.

In this work, I study the effects of the Coulomb inter-
actions on the thermodynamic properties of massless Dirac
fermions in 2D, which can be used as a low energy
description of a single-layer graphene, and find that the
poorly screened electron-electron interaction leads to
anomalies in the quasiparticle thermodynamics.

In the absence of interactions, the free energy density is
(up to a temperature independent constant)

 f0 � �NkBT
3 3��3�

4�v2
F

;

where N is the number of the 2 component Dirac flavors
(N � 4 in the single-layer graphene) and ��n� is the
Riemann zeta function. The strength of the electron-
electron interaction is given by the dimensionless coupling
constant �F � e2=��@vF�, which is the effective fine struc-
ture constant, where � describes the polarizability of the
surrounding medium. If � is large, then �F is small, and to
first order in �F, vF receives a logarithmic correction
1
4vF�F ln��k�, where � is a short wavelength cutoff [12].
Such logarithmic enhancement of the otherwise linear
dispersion near the Dirac point would imply logarithmic
suppression of the specific heat. It is not clear, however,
whether such simpleminded reasoning suffices. Similar
reasoning in the case of an electron gas with a Fermi
surface would also lead to a logarithmic suppression of
the effective mass, the result known to be incorrect due to
screening. Therefore, the key issue in this context is the
effect of the thermal screening on the specific heat in the
2D Dirac case.

To answer this question, I set up a large N expansion
while keeping �FN fixed and arbitrary, the approach which
takes into account the screening. To the leading order in
large N, this is equivalent to a random phase approxima-
tion (RPA). I find that the free energy density receives a
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where � � �FN�=8, the large temperature cutoff is re-
lated to the short wavelength cutoff by @vF� � kBTUV,
and the function g is given by Eq. (12).

To the same order in the large N expansion, the above
result can be interpreted as a free energy density of 2N
modes [14] with dispersion

 ���k� � @vFk
�
1� � ln

�
�

k
� 1

��
;

where

 � �
1

N

�
16

�2 �
2g��� �

4

��

�
:

I find that as �! 0, � � 2�=��N� while for �! 1, � �
8=��2N� (see Fig. 1). The expression (1) can be understood
as the first nontrivial term in the Taylor expansion in
powers of � of

 f�T;�; �� � �2NkBT
Z 1

0

dk
2�

k ln
�

1� exp
�
�
���k�

kBT

��
:

(2)

Note that in the limit of �! 0, the above expression
coincides with the free energy calculated within the
Hartree-Fock approximation. As T ! 0, the free energy
in (2) vanishes as�T3=ln2T [15,16]. Thus the suppression
of the specific heat cV � �T@2f=@T2 relative to the non-
interacting case persists when the polarization effects are
included.

The logarithmic divergence of the particle’s group ve-
locity at low wave numbers may seem to violate causality.
This is an artifact of the approximation which treats the

1=r2 Coulomb forces as instantaneous. Were we to include
the retardation effects introduced by coupling the fermions
to a (quantum) 3D electromagnetic gauge field, the Fermi
velocity would not grow without bound at low k, but
instead saturate to the speed of light [17]. However, since
the growth of vF is only logarithmic, the effects of retar-
dation on the specific heat would be practically unobserv-
able for c	 vF. For all practical purposes, the above
nonrelativistic expression will therefore span the physi-
cally relevant regime.

Below, I justify the above claims. For convenience, I
work in units where @ � kB � vF � 1 and restore the
physical units in the final expressions. Then, the
Hamiltonian is

 H �H 0 � V̂: (3)

The free part of H is

 H 0 �
XN
j�1

Z
d2r� yj �r�p 
 	 j�r��; (4)

where p � �ir,	’s are the Pauli matrices, and  j�r�’s are
two component anticommuting Fermi fields. N is the num-
ber of the Dirac fermion flavors which, in the condensed
matter setting, equals the number of valleys times the
number of spin directions (N � 4 for a single-layer gra-
phene). The interaction part of H comes from the (3D)
Coulomb interaction between the charge density fluctua-
tions and reads

 V̂ �
1

2

Z
d2rd2r0

�
�n̂�r�

e2

�
1

jr� r0j
�n̂�r0�

�
: (5)

Here �n̂�r� �
P
j 
y
j �r� j�r�, and � is dielectric constant of

any potential surrounding insulator. Note that in our units
e2=�, which is the analog of a fine structure constant, is
dimensionless.

Under a scale transformation r! br the Hamiltonian
(3) appears to transform as H ! b�1H . This might
suggest that, even in the interacting theory, the temperature
dependent part of the free energy density f goes as T3.
However, since the theory is well defined in the UVonly in
the presence a short distance cutoff ��1, this symmetry
and the T3 form will in general be violated.

In the large N expansion the leading nontrivial correc-
tion to the free energy density due to interactions is

 �f �
Z �

0

dqq
2�

Z 1
0

d�

2�
coth

�

2T

�

�
tan�1

�
=m�ret
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q
e2
�
� <e�ret

0 �q;�; T�

�

� tan�1

�
=m�ret

0 �q;�; 0�
q
e2
�
� <e�ret

0 �q;�; 0�

��
; (6)

where e2
� � 2�e2=�. �ret

0 �q;!; T� is the retarded polariza-
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FIG. 1 (color online). The coefficient � � 1
N �

16
�2 �2g��� � 4

���
of the logarithmic increase of the free energy in Eq. (2) versus
� � Ne2

�=16 � N �
8

e2

�@vF
. The closed form expression for g is

given in Eq. (12). For small �, � � 2�=��N�, while for �! 1,
� � 8=��2N�.
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tion function of the free fermions. For �2 > q2:

 <e�ret
0 �q;�; T� � NT

ln2

�
�

Nq2

4�
������������������
�2 � q2

p Z 1
1
dx
� ��������������

x2 � 1
p

1� expj j�j�qx2T j
�

��������������
x2 � 1
p

1� expj j�j�qx2T j

�
; (7)
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1
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�
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while for q2 >�2
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�
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Nq2
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p Z 1
1
dx
� ��������������

1� x2
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1� expqx�j�j2T
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1� x2
p
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�
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At T � 0, �ret
0 �q;�; 0� �

 

N
16

q2���������������������
jq2 ��2j

p f
�q2 ��2� � isgn�
��2 � q2�g:

Note that the interaction correction to the free energy has
the scaling form

 �f�T;N; e2
�;�� � T3F �e2

�N;�=T�;

and in the low temperature limit of interest �
T 	 1. I now

proceed with the evaluation of Eq. (6) in this limit.
Consider first the static regime q2 >�2. As can be

readily seen from Eq. (10), for large q, =m�ret
0 �q;�; T�

is small compared to q=e2
� and the real part, and the latter

can be approximated by<e�ret
0 �q;�; 0� to the same order.

As a result, the contribution to �f from the static regime is

 T3
Z �=T dqq2
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where the last line represents only the most divergent
contribution.

Similarly, the most singular contribution from the dy-
namic regime, �2 > q2, can be evaluated by expanding (6)
to first order in deviation of =m�ret

0 �q;�; T� from
=m�ret

0 �q;�; 0� as well as to the first order in
<e�ret

0 �q;�; T�, both of which vanish at large q. The
algebra is somewhat tedious and I just state the final result
for the asymptotic expansion in �=T:

 �
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where the function g�x� is

 g�x� �
Z 1

0
dy

�1� y�2������������������
y�2� y�

p
�y�2� y� � x2�2

: (11)

This integral can be evaluated by a substitution followed by
a partial fraction decomposition and one finds

 g�x� �
1

2x2 �
tan�1�

��������
1�x2
p

x �

2x3
��������������
1� x2
p ; 0< x< 1;

g�x� �
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2x2 �
1

4x3
��������������
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p ln

�
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��������������
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p
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��������������
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p

�
; x > 1:

(12)

Combining everything together I find that up to O�1N�:

 f � �N
3��3�
4�

T3 �

�
24��3�

�3 �2g��� �
6��3�

�2

1

�

�
T3 ln

�

2T
;

(13)

where � � Ne2
�=16. This is the result quoted in Eq. (1).

The corresponding function � � 1
N �

16
�2 �2g��� � 4

��� is
plotted in Fig. 1. Note that the contribution from small q,
which also includes the effect of the thermoplasma mode
[18], gives only terms of order T3.

If we interpret the above expression as an expansion of
the free energy given in Eq. (2), the low temperature
specific heat is subquadratic. Figure 2 shows this suppres-
sion for realistic material parameters pertinent to the
single-layer graphene.

It is interesting to make a connection between this result
and a seemingly unrelated one of Ref. [19], where the
authors studied the specific heat of N massless 2D Dirac
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fermions coupled only to the space component of a 2D
gauge field within the large N expansion. Unlike our
Eq. (1), the correction to the free energy found numerically
in [19] has the opposite sign; i.e., the specific heat is
enhanced relative to the noninteracting case. The numeri-
cal coefficient of the T2 ln1

T enhancement of cV is 2.79 [19],
while in this work I find that upon setting �! 1 the
coefficient of the specific heat T2 lnT suppression is
72��3�=�3 
 2:791. The opposite signs of these terms
can be understood as follows: setting � to infinity in
Eq. (1) recovers the leading logarithmic contribution to
the specific heat of QED3 within the large N expansion
arising from coupling solely to the time component of the
gauge field. However, due to the Lorenz invariance of
QED3, the leading logarithmic contributions from the
time and the space components of the gauge field must
cancel exactly [20]. It is in this sense that the result in
Eq. (1) is consistent with Ref. [19].

In conclusion, I found that the thermodynamic signature
of the long-range electron-electron interactions in a two-
dimensional semimetal are much more pronounced than in
the case of a metal. This stems from the inability of the
charge carriers to screen the long range interactions, and as
a result the density of states is effectively suppressed near
the Dirac point. The experimental observation of the effect
would be an important step towards our understanding of
critical massless matter.
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