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We demonstrate by electronic circuit experiments the feasibility of an unstable control loop to stabilize
torsion-free orbits by time-delayed feedback control. Corresponding analytical normal form calculations
and numerical simulations reveal a severe dependence of the basin of attraction on the particular coupling
scheme of the control force. Such theoretical predictions are confirmed by the experiments and emphasize
the importance of the coupling scheme for the global control performance.
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Introduction.—Time-delayed feedback control was in-
vented in the early 1990s [1] as a simple, robust, and
efficient method to control unstable time periodic orbits
in chaotic systems (cf. [2] for a recent overview of topics in
control of chaos). Early analytical investigations indicated
that unstable orbits with an odd number of real unstable
modes cannot be stabilized by time-delayed feedback con-
trol [3]. Roughly speaking, this means that torsion of the
unstable modes is necessary so that an orbit becomes
accessible to time-delayed feedback control [4]. While it
has been shown recently that such a constraint does not
apply to autonomous systems because of symmetries in-
duced by time translation invariance [5], the so called odd-
number limitation still applies to the frequently used setup
of periodically driven systems. To overcome this limita-
tion, the counterintuitive idea of an unstable control loop
has been proposed [6,7]. By including an additional un-
stable mode into the control loop, one artificially enlarges
the set of real multipliers greater than unity to an even
number. While this concept has been successfully applied
in numerical simulations, an experimental verification is
still missing even for very simple experimental setups.

Analytical approaches for time-delayed feedback con-
trol have been mostly based on linear stability analysis
since such a method can predict the success of the control
without resorting to details of the underlying dynamical
system [4]. But even if such an analysis predicts stable
states, experimental success is not guaranteed because the
control performance may severely depend on the basin of
attraction of the stabilized state. Such a global feature of
time-delay dynamics is difficult to evaluate, in particular,
when the underlying equations of motion are unknown. But
recently, a simple generic mechanism based on bifurcation
theory has proven its relevance in determining the size of
basins in time-delayed feedback control experiments [8].

We will show that the straightforward experimental
implementation of an unstable controller may be hampered
by small basins. Our analysis will point out that basins can
be enlarged considerably by coupling control forces
through the phase of the signal. We will supply analytical
estimates, numerical evidence, and experimental results.
Since the quantitative detection of basins requires well-
defined initial conditions for the whole time-delay system,
the experimental approach will rely on demonstration ex-
periments in terms of electronic circuits.

Theoretical considerations.—As a generic model for a
nonlinear oscillator with an unstable limit cycle, let us
consider the normal form of a subcritical Hopf bifurcation.
The complex valued variable zt describes the oscillator,
and the equations of motion subjected to time-delayed
feedback control read
 

_zt � f��� i!� jztj2gzt � wtztg�jztj� (1a)

_wt � �wt � K�jztj � jzt��j�jztjg�jztj�: (1b)

The control force is governed by the real variable wt, and
the choice �> 0 corresponds to an unstable control loop.
In addition, we allow for different types of coupling of the
control force which is governed by the function g. Here, we
assume � > 0 and!> 0 so that Eqs. (1) admit an unstable
harmonic limit cycle zt � r� exp�i!t�with amplitude r� �����
�
p

if the delay is adjusted accordingly, i.e., � � 2�=!.
Although Eqs. (1) might look quite tedious, they can be
considered as some type of minimal model which can be
derived, for instance, close to a subcritical Hopf instability
j�j � j!j by averaging methods. Thus, Eqs. (1) may be
regarded as a generic model for studying the dependence of
the control performance on the choice of the coupling. In
particular, it has been suggested in [9] that for the use of the
unstable controller, a linear contribution in the coupling is
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essential to ensure sufficient coupling between the control
device and the dynamical degrees of freedom.

Using polar coordinates zt � rt exp�i�t� and approxi-
mating the time-delayed difference by a derivative jztj �
jzt��j ’ � _rt, which is consistent within the spirit of an
averaging approach, the system (1) may be reduced to a
two-dimensional differential equation
 

_rt � ���� r
2
t �rt � wtrtg�rt� (2a)

_wt � �wt � K� _rtrtg�rt�: (2b)

The limit cycle of interest is determined by the nontrivial
fixed point r� �

����
�
p

, w� � 0. In order to study the influ-
ence of the coupling function g on the control perform-
ance, we focus on two special limiting cases: namely,
g�r� � 1 and rg�r� � 1, respectively.

The case g�r� � 1 has been actually considered in [9] to
illustrate the idea of the unstable controller in a mathe-
matical model system. Applying linear stability analysis to
Eqs. (2), one obtains an interval of control amplitudes such
that the nontrivial fixed point becomes stable. The lower
boundary of this interval is given by the critical control
amplitude Kc � �2�� ��=����. At such a value, control
sets in through a Hopf bifurcation. An analysis beyond
linear stability in terms of normal forms reveals that the
Hopf bifurcation is degenerate since the third order non-
linear coefficient is imaginary. Thus, the system is sensitive
to small perturbations, and finally subcritical behavior may
prevail, yielding a mechanism which causes small basins
(cf. e.g., [10]).

A change of the coupling function g may change the
nature of the instability at the control threshold. For in-
stance, if we employ rg�r� � 1 and follow the steps de-
scribed in the previous paragraph, we again obtain a
control interval with lower boundary Kc � �2�� ��=�.
Now the bifurcation at that threshold turns out to be
supercritical; i.e., stable oscillations around the target state
are observed below the control threshold and stabilization
sets in for K > Kc. The transition is continuous, and the
basin of the controlled state stays large even close to the
control threshold. The choice rg�r� � 1 is actually a limit-
ing case as the coupling function becomes singular at the
origin. But it means that the coupling in Eq. (1) appears
through the phase of the variable only, without any depen-
dence on the amplitude. Our considerations suggest that
with such a choice, the basin of the target state can be
increased and that such a recipe applies to a general class of
nonlinear oscillators.

Numerical simulations.—We first confirm the general
theoretical considerations by numerical simulations of the
van der Pol equations [11]
 

_xt � �yt � "xt � x
3
t =3� wtG�xt� (3a)

_yt � xt (3b)

_wt � �wt � K�xt � xt���G�xt�: (3c)

For " < 0, the model admits an unstable limit cycle. The

choice G�x� � x for the coupling function yields the
model already discussed in [9]. Stabilization of the un-
stable state is possible for small values of � and j"j.
Actually, for j"j � 1, averaging yields essentially Eq. (2)
where the coupling functions are related via rg�r� 	R

2�
0 cos’G�r cos’�d’, up to some numerical factor.

Thus, the linear coupling G�x� � x is expected to suffer
from small basins of attraction while a sigmoidal choice
should yield increased basins and a related improvement of
the control performance. Here, we consider parameter
values " � �0:1, � � 0:1 and compare results for two
different coupling functions, G�x� � x and G�x� �
tanh�10x�. Stabilization of the periodic orbit with period
� � 6:2871 . . . is observed in the control intervals K 2

0:4; 0:6� and K 2 
0:1; 0:15�, respectively.

To visualize global properties of time-delayed feedback
control, like basins of attraction of the stabilized state, one
has to cope with the infinite-dimensional phase space of
time-delay dynamics. Here, we fix initial conditions on a
two-dimensional cross section in such a way that for given
initial coordinates (x0, y0), the time-delayed feedback con-
trol device is switched off for one period �. Thus, the
history is taken from the uncontrolled dynamics and is
solely determined by the two-dimensional initial coordi-
nate. Initial conditions for which control works success-
fully are then displayed in a diagram. Such an approach
which has been already proposed for the theoretical analy-
sis of time-delayed feedback control [12] will be applied
for simulations and for experimental data.

The corresponding two-dimensional cross sections of
the basins are displayed in Fig. 1 for the two choices of
couplings, a linear coupling G�x� � x and a sigmoidal
choice G�x� � tanh�10x�. Close to the control threshold,
the linear coupling function generates a fairly small basin
of attraction, in accordance with subcritical behavior. No
such limitation occurs for the sigmoidal coupling where
the basin stays large even close to the control threshold.
Even deep within the control interval, the basin remains
fairly small for the linear choice, compared to the sigmoi-
dal coupling. Overall, a pronounced improvement of the
control performance is observed when the coupling is
chosen appropriately, i.e., when the sign of the signal is
used to determine the control force. Thus, our findings are
in complete agreement with the previous general theoreti-
cal considerations.

Experimental setup and results.—We finally apply the
concept of an unstable controller to an experimental situ-
ation where, e.g., insufficient sensitivity, mismatched or
drifting parameters, internal offsets, and noise may se-
verely hamper the control performance. We designed an
autonomous electronic circuit along the lines of Eq. (3). A
block diagram of this setup is shown in Fig. 2. Besides the
van der Pol oscillator circuit, the diagram includes the
unstable controller as well as elements for defining the
experimental initial condition. The components at the top
of Fig. 2 map the relation _y � x. Then, by integrating x the
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variable y is obtained. The adder comprehends all terms
contributing to _x, and x is again obtained by integration.
The controller variablew is coupled to the x-component, so
the product of w and G�x� is also included in the inputs of
the adder, while the delay term and the intrinsic instability
of w are generated by the loops at the bottom of the
diagram. The bifurcation parameter ", the control ampli-
tude K, and the positive exponent � are determined by the
gain of electronic amplifiers. It turned out that small inter-
nal offset voltages at the electronic multipliers could affect
the size, symmetry, and position of the target orbit. For
defining the initial conditions, we introduced switches
parallel to each of the integrator outputs which generate
the variables xt, yt, and wt. These switches allowed to
apply adjustable constant voltages x0, y0, and w0, respec-
tively. Thus, when switching on the system at t � 0, the
variables xt and yt start from a well-defined state. At about
two cycles later, the feedback loop which generates the
control signal and the controller variable wt is switched on.
Such a time lag is necessary to fill the memory with the
history of the uncontrolled dynamics.

Our experimental results underline that the success of
control depends sensitively on the specific form of the
coupling function G�x�. When applying a linear coupling
G�x� � x successful control was obtained only for a small
range of initial conditions close to the target orbit, as
expected from our numerical simulations. Starting from
initial conditions outside this small range, the controller
variable wt immediately escaped to infinity while xt and yt,
after some irregular transient, either approached the center

of the orbit or ended up in some high amplitude oscillatory
state which meets the saturation limits of the operational
amplifiers. Close to the target orbit, however, the control
mechanism worked successfully. Switching on the feed-
back loop at t � 2 ms wt first shows a distinct pulse and
then settles close to 0 V, while the measured signal yt
oscillates with increasing amplitude and settles at the target
orbit (cf. Fig. 3). This observation, in fact, represents the
first experimental evidence approving the concept of an
unstable controller in general.
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FIG. 2. Block diagram of the van der Pol oscillator with
control loop.
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FIG. 1. Two-dimensional cross section of the basin of Eq. (3)
for linear coupling function G�x� � x (top) and sigmoidal cou-
pling function G�x� � tanh�10x� (bottom) at " � �0:1 and � �
0:1. Left: basin deep inside the control domain at K � 0:5 (left,
top) and K � 0:125 (left, bottom). Right: basin close to the
control threshold at K � 0:405 (right, top) and K � 0:105 (right,
bottom). The broken line indicates the stable target state.
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FIG. 3. Successful control of a torsion-free unstable orbit with
period � � 0:57 ms using G�x� � x, " � �0:1, K � 0:4, and
initial conditions x0 � w0 � 0 V and y0 � �0:55 V. Grey:
control variable wt, black: measured signal yt.
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When replacing the linear coupling G�x� � x by a sig-
moidal one, e.g., G�x� � sgn�x� or G�x� � tanh��x�, ��
1, the situation changed considerably. Technically, such a
modification of the coupling could be easily implemented
by means of an operational amplifier acting as a compara-
tor. After such an implementation, the control performance
improves considerably.

A quantitative estimate of the control performance was
obtained by varying both the control amplitude and the
initial conditions at a fixed value of " � �0:1. In the case
of linear coupling, control was achieved in the range K 2

0:28; 0:67� with shortest transient behavior at about K �
0:4 while for the sigmoidal case, control was observed in
the range K 2 
0:12; 0:16�. We fixed initial conditions x0

and w0 at zero and changed y0 from �0:8 V to �0:8 V in
steps of 10 mV. For each set of initial values, we repeated
the control experiment about 100 times. The fraction of
successful attempts is shown in a histogram, Fig. 4, in
dependence of y0. For linear coupling, successful control
was merely achieved for values of y0 slightly below the
radius of the unstable orbit. We observe in addition a slight
asymmetry which is caused by the offset at the respective
multiplier. For the sigmoidal coupling, the ‘‘basin of at-
traction’’ of the controlled orbit was found to be much
larger than in the linear case. Apart from a narrow gap at
the center, the basin now covers the full range of y0 inside
the orbit.

Conclusion.—We have studied in detail the implemen-
tation of an unstable controller to stabilize periodic orbits
with a single real unstable Floquet mode by time-delayed
feedback control. Our setup provides the first experimental
proof of the feasibility of such a concept. We therefore
conclude that unstable controllers are a suitable tool to
broaden the scope of time-delayed feedback techniques.

Furthermore, our analysis highlights the importance of
suitable coupling schemes to improve the overall control
performance, in particular, with regards to basins of attrac-
tion. By using the phase information of the measured
signal, one is able to enlarge the basins of attraction con-
siderably since the corresponding instabilities at the con-
trol boundaries become supercritical. Our conclusions
have been supported by analytical considerations, numeri-
cal evidence, and experimental results.

Our analysis has shown that one can even cope with
infinite-dimensional phase spaces of delay systems in real
experiments when appropriate cross sections are consid-
ered. Thus, even features beyond linear stability properties
can be addressed whenever the experimental setup allows
for reproducible initial conditions of the time-delay dy-
namics, like in our electronic circuit setup. In such a
respect, investigations of time-delayed feedback control
have a wider scope and may even contribute to fundamen-
tal aspects of general time-delay dynamics.

The experimental study is still in progress, and further
systematic investigations of global properties are neces-
sary. Even now, it is already clear that in systems without
torsion the idea of the unstable controller does work and,
for an appropriate type of coupling, time-delayed feedback
control becomes suitable for practical applications. In
particular, it is tempting to compare the efficiency of differ-
ent strategies for controlling such orbits, like unstable
controllers, rhythmic control [13], and the implementation
of recent results for autonomous systems [5].
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FIG. 4. Experimentally obtained histograms for successful
control in dependence on the initial condition y0 for different
control couplings and " � �0:1, x0 � w0 � 0 V. Grey: linear
coupling G�x� � x (K � 0:4), black: sigmoidal coupling G�x� �
sgn�x� (K � 0:15).
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