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Both bright and dark traveling, locked, intrinsic localized modes (ILMs) have been generated with a
spatially uniform driver at a frequency in the acoustic spectrum of a nonlinear micromechanical cantilever
array. Complementary numerical simulations show that a minimum density of modes, hence array size, is
required for the formation of such locked smoothly running excitations. Additional simulations on a small
1D antiferromagnetic spin system are used to illustrate that such uniformly driven running ILMs should be
a generic feature of a nanoscale atomic lattice.
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It has been predicted that a discrete lattice of the Fermi-
Pasta-Ulam (FPU) type [1] in which the elements are
coupled together nonlinearly would exibit intrinsic local-
ized modes (ILMs) [2] as well as plane wave modes and
such localized excitations have now been observed in a
variety of discrete nonlinear systems [3]. Steady state
driving [4,5] at the limiting frequencies of some dynamical
systems have produced a systematic way to examine both
the production and destruction of stationary ILMs [6–9].
Recent theoretical investigations have focused attention on
the nonlinear dynamics of acoustic modes. In general,
dynamical energy cannot remain localized in the acoustic
spectrum because some overtone of the ILM frequency is
always on speaking terms with the linear phonon band.
However, a theoretical study of finite-size Klein-Gordon
lattices [10] has shown that for small systems where the
phonon frequencies are sparsely distributed such localized
solutions, referred to as ‘‘phantom breathers’’, can exist
between these phonon modes. In a different direction
theoretical studies on nonlinear plane wave excitations in
FPU lattices, called q breathers [11,12], are predicted to be
stable for small enough nonlinearity and only require for
their existence a discrete nonequidistant spectrum of nor-
mal modes, as induced by a finite system [13]. An experi-
mental study of the acoustic nonlinear excitations for a
small discrete FPU system is yet to occur.

This Letter describes our experimental investigation of
the dynamics of a small micromechanical cantilever array
in the presence of a continuous, spacially uniform locking
driver. With sufficient driving amplitude, beyond the
q-breather limit, and with its frequency strategically lo-
cated in the plane wave acoustic spectrum either bright or
dark ILMs can be generated. We find that for a spatially
uniform driver the running, locked ILM is a property of the
small array. Using these findings as a starting point a small
model atomic system in the form of a 1D antiferromagnet
is examined numerically to show that running, locked

ILMs are a natural feature of a nanoscale lattice when
excited by a spatially uniform driver.

The micromechanical dielement cantilever array, com-
posed of long and short cantilevers, is made from a thin
silicon nitride film (�300 nm thick) resting on a silicon
substrate. Each cantilever has a transverse vibrational
mode and the coupling between cantilevers is provided
by a thin nitride overhang region. The number of canti-
levers is 152 and the resonance frequencies are from 60 to
150 kHz. Both the cantilever itself and the interconnecting
overhang have ‘‘hard’’ or ‘‘positive’’ nonlinearity. The
sample is attached to a piezoelectric transducer (PZT)
situated in a vacuum chamber. The array is shaken up
and down uniformly. The vibration of each cantilever is
recorded by a 1D-CCD camera. A laser beam is line
focused along the cantilever tips, and the reflected beam
is imaged on the camera using a lens. As the amplitude of a
cantilever increases its image darkens. The array and mea-
suring method are described in more detail in Ref. [14].

The observed localized vibrational patterns versus time
are shown in Fig. 1. Panel (a) shows a stationary ILM
driven at a frequency above the top of the plane wave
spectrum. (Such stationary ILMs have been studied in
detail in Ref. [14].) The horizontal white lines are images
of cantilevers at rest. Because of the measuring technique,
the dark region near the center of the picture identifies
large amplitude cantilevers associated with the ILM. The
ILM, with locked amplitude, [4,8] is strongly pinned at a
lattice site, is very stable, and its stepwise manipulation has
already been demonstrated [14]. Now examine the new
finding in panel (b) in Fig. 1 where a driving frequency
inside but near the top of the acoustic branch is used. A
large amplitude (dark) region is generated and locked to
the driver but now it travels across the array, reflecting
from the boundaries, resulting in a zigzag pattern. Finally,
consider another new feature in panel (c) where a driving
frequency inside but near the bottom of the acoustic branch
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is used. The horizontal dark and white stripes represent a
large amplitude standing wave which extends over all
cantilevers. Superimposed on this pattern is a traveling
dark ILM excitation. The arrows identify its zigzag path.
The bright regions at the end points are due to overlapping
incident and reflected hole excitations.

The experimental sequence to obtain a traveling ILM is
as follows: identify a plane wave mode in the region where
the nonlinearity balances the dispersion, slowly increase
the driver frequency so the plane wave nonlinear mode
grows in amplitude reaching the modulational instability,

increase the driver frequency farther until a single traveling
ILM is resolved. If no ILM state forms, repeat the sequence
again from the beginning. The traveling ILM is one of
these two stable states obtained by increasing the driving
frequency beyond the unstable, modulation instability re-
gion, where many traveling wave packets are observed.
When the driver frequency is decreased from either the
ILM or the no-ILM high frequency state, the system al-
ways goes back into the unstable region. Only increasing
the driver frequency provides the opportunity to reach the
traveling ILM state. The traveling ILMs shown in Fig. 1 are
obtained by increasing the driver frequency. For the 152
element array the spacing between plane wave modes with
the same symmetry is about 1.5 kHz. When a locked
traveling ILM appears its frequency can be varied over
about 1=2 of that frequency interval. We now demonstrate
that the precise behavior of these locked, and smoothly
traveling ILMs is a feature of the small system size.

The acoustic and opticlike dispersion curves for the
dielement array are shown in Fig. 2(a). Since the nonline-
arity is positive, a stationary locked ILM can appear above
the upper branch. Although the highest and lowest fre-
quency modes at k � 0 couple most strongly to the PZT,
because of the fixed boundary conditions a single mode of
odd symmetry in the lower branch (wavelength � � 2L=n,
where L is the sample length and n is an odd number) can
be excited by simply adjusting the driver to its frequency.
The dotted horizontal lines, labeled (1, 2, 3) in Fig. 2(a),
identify typical driver frequency locations to be associated
with the experimental responses illustrated in Figs. 1(a)–
1(c). To generate traveling ILMs, one chooses the fre-
quency of a linear mode in the band between the two
arrows shown in Fig. 2(a). (This will become the carrier
frequency of the traveling ILM.) Because of the small size
of the system a well-defined frequency gap exists between
that mode and the next higher frequency one as illustrated
in Fig. 2(b), where the solid lines identify strongly driver
active modes and the dashed lines weak driver active
modes. The measured speed of each kind of traveling
ILM is in good agreement with the slope of the dispersion
curve at that particular driving frequency. These slopes are
illustrated schematically in Fig. 2(a). The traveling ILMs
shows some similarities and some differences with bright
and dark solitons [15].

Numerical simulations for arrays of different sizes using
the lumped element ball and nonlinear spring model de-
scribed previously [14] support these findings. The open
circles in Fig. 2(b) identify frequencies where locked
smoothly traveling ILMs are found for three different
system sizes: 50, 100, and 200 elements. Crosses corre-
spond to frequency regions of instability, involving inter-
mittent modes and complex traveling modes. The
complexity comes about when some overtone of the ILM
frequency couples to the linear phonon band. In general,
smoothly traveling locked ILMs appear at frequencies
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FIG. 1. Several kinds of ILMs produced experimentally with
the driver at different frequencies in a cantilever versus time plot.
(a) Stationary bright ILM is recorded as a thick black horizontal
band, (b) bright traveling ILM appears as a dark zigzag pattern,
(c) dark traveling ILM zigzag pattern is identified by the arrows.
Where the dark ILM excitation travels the large amplitude
standing wave pattern vanishes. The bright regions at its bounda-
ries are due to the overlap of the incident and reflected hole
amplitudes at those locations. Driving frequencies: (a) 137.8,
(b) 110.086, and (c) 81.26 kHz.
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above the unstable regions. Driving acceleration ampli-
tudes are 2:5� 103, 5� 103, and 1� 104 m=s2, respec-
tively. When the results are simple, like near the mode at
112 kHz for 100 element case, the general sequence with
increasing driver frequency is as follows: excite standing
wave ! fluctuating standing wave ! complex traveling
mode ! no response ! smoothly running ILM.

Figure 3 shows an averaged energy for the excitation
(counting only the high amplitude cantilevers) as a func-
tion of driving frequency, for a single carrier mode at
112 kHz for N � 100. The modulation instability starts
at the frequency indicated by the left edge of the double-
headed arrow. Until 112.5 kHz, a complex traveling mode,
displayed in the inset (a), is observed. At frequencies above
the energy gap the locked running ILM state appears as
shown in inset (b). This localized feature is one side of a

bistable state, the other side is a no-mode state, character-
istic of the hysteresis response of a Duffing oscillator. As
the linear modes become closely spaced with increasing
system size, in addition to the overtone frequencies of the
ILM coupling to the plane wave modes, the driven ILM
from the Nth carrier mode interacts with the driven com-
plex mode of the (N � 1)th mode and becomes unstable.

To test the generality of these findings we have also
numerically examined for limited sizes the dynamical
properties of an easy plane antiferromagnetic system, the
quasi 1D �C2H5NH3�2CuCl4 [9]. The equation of motion
for a normalized spin ~Sn is

 

d
dt
~Sn � �� ~Sn � ~Hn � �� ~Sn � � ~Sn � ~Hn�; (1)

where ~Sn is a macroscopic spin averaged over the ferro-
magnetic ab plane, �, the gyromagnetic ratio, and � is the
Landau damping parameter. Here ~Hn is the magnetic field
acting on the nth spin, with

 

~H n � �2J� ~Sn�1 � ~Sn�1� � 2A
$ ~Sn �Hx0 ~ex cos!t; (2)

where J is the nearest neighbor antiferromagnetic ex-
change constant, A

$
, the anisotropic field tensor, and the

last term, the ac driving field along a specific transverse
spin direction. The linear dispersion curve of the spin wave
spectrum is shown in Fig. 4(a). At k � 0 the two magnetic
active modes are linearly polarized in orthogonal direc-
tions. Since the nonlinearity of this dynamical equation is
soft, the frequency region between the two arrows shown is
examined for bright traveling ILMs in limited systems.
Shown in Fig. 4(b) are the spin wave modes of the lower
branch that can be excited by the ac field polarized along
the upper branch direction made active by the free bound-
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FIG. 3. Energy of cantilever per site averaged over the large
amplitude cantilevers as a function of driver frequency for N �
100. The complex traveling mode pattern (inset a) occurs in the
frequency region indicated by the two heaeded arrow. The
smooth traveling ILM (inset b) is observed for frequencies
between 112.54–113.6 kHz. The frequencies of insets (a) and
(b) are 112.45 and 112.6 kHz, respectively. The time window of
each inset is 4 ms. The spikes occur at instabilities within the
averaging 4000 period time duration.
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FIG. 2. (a) Linear and nonlinear dispersion map of the diele-
ment cantilever array showing various locked ILM positions.
Open circles identify the linear modes. The three horizontal
dashed lines identify characteristic driving frequencies.
(1) Solid diamonds, illustration of a Fourier transform (FT) of
a locked, stationary ILM generated above the top of the upper
branch, (2) open squares, FT of a locked traveling bright ILM,
and (3) open squares, FT of a locked traveling dark ILM. Solid
circles indicate carrier modes of traveling ILMs. These locked
ILMs occur where the dispersion balances the nonlinearity and
map as groups of points on straight lines. Because of the hard
nonlinearity the bright ILM, (2), appears above the linear dis-
persion curve while the dark ILM, (3), appears below the non-
linear dispersion curve (dotted curve that is shifted up by the
background excitation of the dark ILM). The hole feels a soft
nonlinearity in the strongly excited background. The two arrows
indicate the frequency region examined numerically. (b) Nu-
merical simulation results for the dependence of traveling locked
bright ILMs on system size. Solid and dotted horizontal lines
show strongly and weakly active vibrational modes, respectively.
Open circles identify frequencies where locked smoothly trav-
eling ILMs are found. Crosses correspond to frequency regions
of instability, involving intermittent modes and complex travel-
ing modes. The smoothly traveling locked ILMs appear at
frequencies above these unstable regions.
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ary condition. (Using this polarization suppresses exciting
the strong low frequency k � 0 mode.) The circles and
crosses again identify frequencies where either single trav-
eling ILMs have or have not been generated. The inset in
Fig. 4(a) shows such a locked traveling ILM at 1.74 GHz
for the 100 spin lattice.

Our experiments demonstrate that micromechanical
cantilever arrays of a few hundred elements can support
locked ILMs of both the stationary and running type by
simply tuning the driver frequency. Stationary locked
ILMs, outside of the plane wave spectrum, are well known
and can occur for any size discrete system. The new
excitations are the locked, smoothly running acoustic
ILMs that require the uniform driver frequency to occur
in the frequency gap between neighboring plane wave
modes. How the symmetry of the system is broken in the
presence of a spatially uniform driver resulting in a single
traveling ILM has not been resolved; however, practically

these running localized excitations are a property of a small
discrete system and they occur beyond the q-breather
amplitude range. It should be mentioned that a theoretical
study of a FPU 1D lattice with a finite k driver at inband
frequencies, but without the limited size restriction, has
found only traveling modulated waves [16]. Finally, since
locked running ILMs depend only on discreteness, non-
linearity, the mode density, and the balancing of nonline-
arity against the dispersion, the same dynamical properties
can be expected to occur in a variety of small systems,
including atomic lattice of nanoscale dimensions.
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FIG. 4. (a) Linear dispersion curve of the quasi 1D antiferro-
magnet �C2H5NH3�2CuCl4. The two magnetically active k � 0
modes are linearly polarized in orthogonal directions. Because of
the soft nonlinearity of magnetic systems the lower frequency
region between the two arrows will be probed numerically for
locked traveling bright magnetic ILMs. Inset: Spin site versus
time showing a single locked traveling magnetic ILM at
1.74 GHz for the 100 spin case. The inset time window is
57 ns. (b) Numerical simulation results for the dependence of
traveling locked ILMs on system size. Horizontal lines identify
spin wave modes of the lower branch that can be excited by the
ac field polarized along the upper branch k � 0 direction due to
the finite lattice size with free boundary conditions. Crosses
indicate frequencies for the complex traveling modes and open
circles identify smoothly traveling mode locations. The fre-
quency of the smoothly running mode is always lower than the
complex mode, when they stem from the same carrier mode.
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