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The nonminimal pure spinor formalism for the superstring is used to prove two new multiloop theorems
which are related to recent higher-derivative R4 conjectures of Green, Russo, and Vanhove. The first
theorem states that when 0< n< 12, @nR4 terms in the Type II effective action do not receive
perturbative contributions above n=2 loops. The second theorem states that when n � 8, perturbative
contributions to @nR4 terms in the IIA and IIB effective actions coincide. As shown by Green, Russo, and
Vanhove, these results suggest that d � 4 N � 8 supergravity is ultraviolet finite up to eight loops.
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Introduction.—The main success of superstring theory
is that it provides a consistent quantum theory of gravity
which replaces general relativity at small distances. It is
therefore important to know how graviton scattering at
high energies differs in superstring theory from general
relativity. For scattering amplitudes involving two incom-
ing and two outgoing gravitons, the lowest-order deviation
from general relativity comes from R4 terms in the super-
string effective action [1], and higher-order deviations
come from @nR4 terms where @n denotes n spacetime
derivatives, R denotes the Riemann tensor, and Lorentz
indices are suppressed. The structure of these @nR4 terms is
believed to be tightly constrained by duality symmetries of
the superstring [2]; however, these duality symmetries are
difficult to prove since they involve nonperturbative ef-
fects. It is therefore important to compute @nR4 terms in
perturbative superstring theory, both for studying devia-
tions from general relativity and for testing the nonpertur-
bative duality symmetries.

A further motivation for studying the structure of @nR4

terms in Type II superstring theory is that they provide
information about the maximally supersymmetric version
of gravity in four dimensions which is called d � 4 N � 8
supergravity. In the early days of supersymmetry, d � 4
N � 8 supergravity was conjectured to be a consistent
finite theory of gravity. It was later realized that d � 4N �
8 supergravity probably has ultraviolet divergences which
are eliminated only after including the massive states of
superstring theory. However, the existence of these ultra-
violet divergences in d � 4 N � 8 supergravity has never
been proven, and it was recently shown by explicit com-
putation that they are absent up to three loops [3].
Furthermore, it was argued in [2,4,5] that finiteness prop-
erties of d � 4 N � 8 supergravity are related to non-
renormalization theorems of @nR4 terms. For example,
using the results described here that @nR4 terms do not
get contributions above n=2 loops when n < 12, it was
deduced in [5] that d � 4 N � 8 supergravity is ultraviolet
finite up to 8 loops.

Although there are several prescriptions available for
computing superstring amplitudes, the most efficient pre-

scription is based on the pure spinor formalism which is
manifestly super-Poincaré covariant [6]. For example, two-
loop computation using the Ramond-Neveu-Schwarz
(RNS) formalism is an arduous task because of the lack
of manifest spacetime supersymmetry. And computations
beyond one loop using the Green-Schwarz formalism are
complicated by the lack of manifest Lorentz covariance.
On the other hand, two-loop computations using the pure
spinor formalism are relatively simple [7].

Using the minimal version of the pure spinor formalism
which involves a bosonic ghost �� satisfying the pure
spinor constraint ��m� � 0, a multiloop prescription
was defined in [8] and used to prove certain vanishing
theorems. One theorem stated that massless N-point multi-
loop amplitudes are vanishing when N � 3, which is re-
lated to perturbative finiteness of the super string [9].
Another theorem stated that R4 terms in the Type II effec-
tive action do not receive perturbative contributions above
one loop, which is related to S duality of the Type IIB
superstring [10,11].

Recently, a new multiloop prescription was proposed
using a nonminimal version of the pure spinor formalism
which involves both the pure spinor �� and its complex
conjugate ��� [12]. This nonminimal prescription for multi-
loop amplitudes has several advantages over the minimal
prescription. First, unlike in the minimal formalism, the
nonminimal formalism allows the construction of a com-
posite b ghost satisfying fQ; bg � T. Second, the nonmi-
nimal formalism can be interpreted as a critical topological
string, so the nonminimal amplitude prescription is the
same as in bosonic string theory. Third, there is no need
for picture-changing operators in the nonminimal prescrip-
tion, which were inconvenient in the minimal prescription
since they broke manifest Lorentz covariance at intermedi-
ate stages in the computation.

The only difficulty in the nonminimal prescription is
regularizing the functional integral over the pure spinor
ghosts when �! 0, which is discussed in [13]. Fortu-
nately, this �! 0 regularization is unnecessary for prov-
ing the multiloop theorems in this Letter. Furthermore, it
was recently shown with Carlos Mafra that various one-
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and two-loop amplitude computations using the nonmini-
mal prescription correctly reproduce the RNS result [14].
Although it should be possible to directly prove the equiva-
lence of the minimal and nonminimal amplitude prescrip-
tions (perhaps using the Cech description of Nekrasov
[15] ), this has not yet been done.

In this Letter, the nonminimal prescription will be used
to prove two new multiloop theorems which are related to
recent higher-derivative R4 conjectures of Green, Russo,
and Vanhove based on duality symmetries [2,16–21]. The
first new multiloop theorem states that when 0< n< 12,
@nR4 terms in the Type II effective action do not receive
genus g contributions for g > n=2. The restriction that n <
12 is related to the fact that @12R4 can be written as a
superspace integral over 32�’s. The second new multiloop
theorem states that when n � 8, perturbative contributions
to @nR4 terms in the IIA and IIB effective action coincide.
For n � 4, this can be shown using the RNS formalism
[19], and for n � 6, it was recently conjectured by Green
and Vanhove [17].

After reviewing the amplitude prescription using the
nonminimal formalism, the two new multiloop theorems
will be proven.

Review of nonminimal amplitude prescription.—Using
the nonminimal pure spinor formalism, the N-point g-loop
ampitude prescription is [12]
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is a composite operator satisfying fQ; bg � T, and
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is an operator satisfying N � efQ;�g which regularizes the
0=0 coming from integration over the world sheet zero

modes where, for example, s�I �
H
�I
dzs� is the zero

mode obtained by integrating s� around the Ith a cycle.
When the bosonic zero modes of ��, NI

mn, or JI go to
infinity, the functional integral over these zero modes is
well defined because of the exponential cutoff in N .
However, when �� ! 0, the poles in (2.2) make the func-
tional integral over �� ill defined if the sum of the degree
of the poles is greater than or equal to 11. If the contribu-
tions from the b ghosts diverge as fast as �� ����11, the
measure factor

R
d11�d11 �� does not converge fast enough

to make the functional integral well defined. In a paper
with Nekrasov [13], it will be shown how to regularize this
�! 0 divergence for arbitrary multiloop amplitudes.
However, there are certain amplitudes for which the sum
of the degree of the poles from the b ghosts is always less
than 11, so one does not need to worry about regularizing
the �! 0 divergence. For example, since the maximum
pole in the b ghost is of degree 3, there is no �! 0
divergence when the genus is less than or equal to two
since, for these amplitudes, there are three or fewer b
ghosts. As will also be shown in [13], another type of
amplitude for which there is no �! 0 divergence is
when at least one of the 16 �� zero modes comes from N .

Since the b ghost of (2.2) is spacetime supersymmetric,
the 16 �� zero modes in the functional integral of (2.1)
must come either from the regulator N or from the
external vertex operators

QN
r�1 Ur�zr�. If all 16 � zero

modes come from the superfields in the vertex operators
Ur, the resulting term in the effective action is not a ten-
dimensional F term since it can be written as an integral
over the maximum number of �’s. However, if at least one
of the � zero modes come from N , the amplitude could
contribute to F terms. Therefore, the above argument im-
plies that amplitudes which contribute to ten-dimensional
F terms do not require regularization when �! 0.

Note that as in lower dimensions, D � 10 F terms are
defined as manifestly gauge-invariant terms in the super-
space effective action which cannot be written as integrals
over the maximum number of �’s. Although one does not
know how to construct off-shell D � 10 superspace ac-
tions, one can construct higher-derivative D � 10 super-
space actions which are functions of on-shell linearized
superfields.

For closed Type IIB superstrings, the massless super-
gravity vertex operator is

 

Z
d2zU �

Z
dz��GMN�Z� 	 B MN�Z��@Z
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	W���Z�d� �d� 	 . . . �; (2.4)

where ZM � �xm; ��; ����, and the gauge-invariant super-
field of lowest dimension is W���x; �; ��� whose lowest
component is the Ramond-Ramond field strength of di-
mension 1. Note that the dilaton and axion are gauge-
invariant fields of dimension zero, but they always appear
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with derivatives in the massless vertex operator. Since N �
2 D � 10 superspace contains 32�’s, any term in the
superspace action involving M superfields W�� which is
integrated over the full superspace has dimension 
 �M	
16�. Therefore, any term in the N � 2 D � 10 superspace
action involving M field strengths which has dimension
less than (M	 16) is necessarily an N � 2 D � 10 F
term. For example, since the curvature tensor Rmnpq has
dimension 2, the term

R
d10x

���
g
p
@LRM in the Type II effec-

tive action is an N � 2 D � 10 F term if L	 2M<M	
16, i.e., if L	M< 16.

New multiloop theorems.—The multiloop theorems in
this Letter will be proven by counting fermionic zero
modes in the integrand of (2.1). The left-moving fermionic
world sheet fields in the nonminimal formalism include the
superspace variable �� and its conjugate momentum d�
and the nonminimal variable r� and its conjugate momen-
tum s�. The nonminimal variable r� is constrained to
satisfy ���mr � 0, where ���m �� � 0, so r� has 11 inde-
pendent components. Since �� and r� are world sheet
scalars, on a genus g surface �� contains 16 zero modes,
d� contains 16g zero modes, r� contains 11 zero modes,
and s� contains 11g zero modes. So the amplitude of (2.1)
vanishes unless all of these fermionic zero modes are
present in the integrand of (2.1).

Nonrenormalization of @nR4.—Using the prescription of
(2.1), it will now be proven that perturbative contributions
to @nR4 terms vanish above n=2 loops. This is proven by
showing that the massless four-point g-loop amplitude at
low energies is proportional to

 

�
@
@�

@

@ ��

�
2g	4

W4 � @2gR4 	 . . . ; (3.1)

where W is the Ramond-Ramond field strength of (2.4). So
@nR4 terms only get perturbative contributions up to genus
n=2. When g 
 6, (3.1) is no longer an F term, so there
may be �! 0 divergences which need to be regularized.
The theorem has therefore only been proven when n < 12.

To get a nonvanishing four-point g-loop amplitude, the
integrand of (2.1) must provide 16g d� zero modes which
can come either from the four vertex operators of (2.4),
from the regulator N of (2.3), or from the 3g� 3 b ghosts
of (2.2). The most efficient way to obtain these 16g zero
modes is if the four vertex operators provide the term
�W��d� �d��4 and the regulator N provides the term
�sd�11g, where 11g is the maximum power since there are
only 11g independent s zero modes.

The remaining 5g� 4 d� zero modes must come from
the 3g� 3 b ghosts, and to minimize the number of ��

zero modes coming from the vertex operators, it will be
advantageous to minimize the number of r� zero modes
coming from the b ghosts. The ghost contribution which

provides 5g� 4 d� zero modes while minimizing the
number of r� zero modes is
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where g� 2 b ghosts provide the first term and 2g� 1 b
ghosts provide the second term.

The contribution of (3.2) provides 2g� 1 of the 11r�
zero modes, so the remaining 12� 2g r� zero modes must
come from N through the term �r��12�2g. Since this term
provides 12� 2g of the 16�� zero modes, the remaining
2g	 4 �� zero modes must come from the superfields
W�� in the vertex operators.

So for the amplitude to be nonvanishing, the four exter-
nal vertex operators must provide at least 2g	 4 �� zero
modes. Therefore, at low energies, the four-point g-loop
scattering amplitude is proportional to (3.1) as claimed.
Note that it is assumed that there are no inverse factors of
momentum coming from the h

Q4
r�1 e

ikrx�zr�i correlation
function which would decrease the number of derivatives
on R4 in (3.1). This assumption is reasonable since the
massless three-point multiloop amplitude vanishes, so one
does not expect any poles in momentum for the four-point
multiloop amplitude.

Equivalence of IIA and IIB @nR4 terms.—It will now be
proven that up to four loops, four-point graviton contribu-
tions to F terms coincide in the IIA and IIB effective
actions. Using the previous theorem that @nR4 terms do
not get perturbative contributions above n=2 loops, this
implies that perturbative contributions to @nR4 terms co-
incide in the IIA and IIB effective actions for n � 8.

To prove this multiloop theorem, similar methods to [19]
will be used. IIA and IIB superstrings are related by a
parity operation on the left-moving world sheet variables
which flips the chirality of the left-moving spacetime
spinor. For graviton scattering amplitudes, this parity op-
eration flips the sign of terms which involve an 	m1...m10

tensor coming from the integration over the left-moving
variables.

For four-point graviton amplitudes, the only way to
contract the vector indices on such an 	m1...m10

tensor is if
there is also an 	n1...n10

tensor coming from the integration
over the right-moving variables. One can then contract the
vector indices of the left-moving 	 tensor either with the
indices of the right-moving 	 tensor or with the external
momenta and polarizations.

Since there are three independent momenta, kmr for r �
1 to 3, and four independent polarizations, hmnr for r � 1 to
4, the minimum number of indices which must be con-
tracted between the left- and right-moving 	 tensors is
three. This can be accomplished using the contraction

 hm1n1
1 hm2n2

2 hm3n3
3 hm4n4

4 km5
1 kn5

1 k
m6
2 kn6

2 k
m7
3 kn7

3 

m8n8
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m10n10	m1...m10
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: (3.3)
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To contract indices of the left- and right-moving 	
tensors, the correlation function must involve factors of
@xm and �@xn since these are the only left- and right-moving
fields which can be contracted. For example, in the RNS
formalism, these factors of @xm and �@xn come from the
left- and right-moving picture-changing operators. Since
g-loop RNS amplitudes involve 2g� 2 left- and right-
moving picture-changing operators, and since one needs
at least three @x’s and @x’s to perform the contraction of
(3.3), the term in (3.3) is only possible when g 
 3. So the
four-point graviton amplitudes in IIA and IIB superstring
theory have been proven to coincide up to two loops using
the RNS formalism [19].

Using the prescription of section for F-term computa-
tions, the three factors of @xm and �@xn can come from the
term @xm� ���md�

2� ����
in the b ghost. By counting d� zero modes as

in (3.2), one finds at genus g that the maximum number of
@x factors is g� 2. So the contraction of (3.3) is only
possible when g 
 5, implying that four-point graviton
amplitudes contribute equally to IIA and IIB F terms
when g � 4.
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