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Using the adaptive time-dependent density-matrix renormalization group method, we study the time
evolution of strongly correlated spinless fermions on a one-dimensional lattice after a sudden change of
the interaction strength. For certain parameter values, two different initial states (e.g., metallic and
insulating) lead to observables which become indistinguishable after relaxation. We find that the resulting
quasistationary state is nonthermal. This result holds for both integrable and nonintegrable variants of the
system.
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Recent experiments on optical lattices have made it
possible to investigate the behavior of strongly correlated
quantum systems after they have been quenched. In these
experiments, the system is prepared in an initial state j 0i
and then is pushed out of equilibrium by suddenly chang-
ing one of the parameters. Prominent examples are the
collapse and revival of a Bose-Einstein condensate (BEC)
[1], the realization of a quantum version of Newton’s
cradle [2], and the quenching of a ferromagnetic spinor
BEC [3]. All of these systems can be considered to be
closed, i.e., have no significant exchange of energy with a
heat bath, so that energy is conserved to a very good
approximation during the time evolution. Furthermore,
since these systems are characterized by a large number
of interacting degrees of freedom, application of the ergo-
dic hypothesis leads to the expectation that the time aver-
age of observables should become equal to thermal
averages after sufficiently long times. Various authors
have recently given voice to such an expectation [4–6].
However, the experiment on one-dimensional (1D) inter-
acting bosons shows no thermalization, a behavior that was
ascribed to integrability [2]. Rigol et al. found that an
integrable system of hard-core bosons relaxes to a state
well described by a Gibbs ensemble that takes into account
the full set of constants of motion [7]; similar results were
found for the integrable Luttinger model [8].

For a closed system, the set of expectation values of all
powers of the Hamiltonian Ĥ constitute an infinite number
of constants of motion, irrespective of its integrability.
Therefore, the question of the importance of integrability
in a closed system that is quenched arises. We address this
issue by investigating the full time evolution of a strongly
correlated system whose integrability can be easily de-
stroyed by turning on an additional interaction term. We
show, using the recently developed adaptive time-
dependent density-matrix renormalization group method
(t-DMRG) [9–13], that, in a certain parameter range, two
different initial states with the same energy relax, to within
numerical precision, to states with indistinguishable mo-
mentum distribution functions. A comparison with quan-
tum Monte Carlo (QMC) simulations shows, however, that

they do not correspond to a thermal state. By using a
generalized Gibbs ensemble [7,8,14,15] with the expecta-
tion value of the powers of the Hamiltonian hĤni as con-
straints, we can improve the agreement with the time
averages of the evolved system. This applies to both the
integrable as well as the nonintegrable case.

In this Letter, we investigate the Hamiltonian

 Ĥ � �th
X

j

�cyj�1cj � H:c:� � V
X

j

njnj�1; (1)

with nearest-neighbor hopping amplitude th and nearest-
neighbor interaction strength V at half-filling. The c�y�i
annihilate (create) fermions on lattice site i, ni � cyi ci,
and we take @ � 1. We measure energies in units of th,
and, accordingly, time. The well-known ground-state phase
diagram for the half-filled system consists of a Luttinger
liquid (LL) for V < Vc � 2, separated from a charge-den-
sity-wave (CDW) insulator (V > Vc) by a quantum critical
point Vc [16]. This model is integrable, with an exact
solution via the Bethe ansatz [17]. We consider open chains
of up to L � 100 sites pushed out of equilibrium by
suddenly quenching the strength of V from an initial
value V�t � 0� � V0 to a different value V�t > 0� � V.
Furthermore, we study the effect of adding a next-near-
est-neighbor (NNN) repulsion V2

P
jnjnj�2 to the model,

which makes it nonintegrable. We compute the time
evolution using the Lanczos time-evolution method
[13,18–20] and the adaptive t-DMRG. We study the mo-
mentum distribution function (MDF) hnki�t� �

1
L �PL

l;m�1 e
ik�l�m�hcyl cmi�t�, i.e., the Fourier transform of

the one-particle density matrix, �lm � hc
y
l cmi. In the

t-DMRG, we utilize the Trotter approach developed in
Refs. [9,10] as well as the Lanczos approach [12,13]
with additional intermediate time steps added within
each time interval [21]. We hold the discarded weight fixed
to " � 10�9 during the time evolution, but additionally
restrict the number of states kept to be in the range 100 �
m � 1500. In all calculations presented here, the maxi-
mum error in the energy, which is a constant of motion, is
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1%, and, in most cases, less than 0.1%, at the largest times
reached.

When an initial LL state is quenched to the strong-
coupling regime, V � th, we find that hnk�t�i (Fig. 1)
exhibits collapse and revival on short time scales, whereas
the density-density correlation function remains essen-
tially unchanged, i.e., retains the power-law decay of
the LL. This can be understood by considering a quench
to the atomic limit, th � 0. In this limit, all observables
that commute with the density operator, including the
density-density correlation function, are time independent.
Furthermore, since the only remaining interaction is the
nearest-neighbor density-density interaction, it can be
shown analytically that the one-particle density matrix
�ml�t� involves only two frequencies (!1 � V and !2 �
2V), resulting in a periodic oscillation with a revival time
of Trevival � 2�=V [22]. Thus, in analogy to the observed
collapse and revival of a BEC in an optical lattice [1], the
single-particle properties of an initial LL state exhibit
collapse and revival with this period. For the strong-
coupling regime, the time evolution retains the oscillatory
behavior of the atomic limit; two frequencies !1 and !2

are indeed dominant in the spectrum, as can be seen in the
inset of Fig. 1. However, the finite hopping amplitude leads
to a dephasing of the oscillation on a time scale of
tdephase 	 1=th.

Afterwards, observables oscillate with a small amplitude
around a fixed value, suggesting that the system reaches a
quasistationary state. In order to further characterize such
states, we study the evolution of the system for various
values of V up to times 1 order of magnitude larger than
1=th when applying the t-DMRG and up to 2 orders of
magnitude larger when using full diagonalization (FD). We
find that the time averages for the longer times reachable
by the FD agree with the time averages for the times
reachable by the t-DMRG. Therefore, we conclude that
the relevant time scale for the relaxation is indeed given by
1=th. In Fig. 2, the MDFs, obtained by performing an
average in time from time t � 3 to t � 10 at the quantum

critical point, V � Vc, and at a point in the CDW region,
V � 5, are shown. In order to investigate to what extent the
(quasi-)stationary behavior is generic, we examine its de-
pendence on the initial state. We do this by preparing two
qualitatively different initial states with the same average
energy hĤi for each case: one a ground state in the LL
regime and the other a ground state in the CDW regime.
This is possible for a certain range of V in the intermediate
coupling regime. In Fig. 2, results for two such initial states
are compared with each other and with the MDF obtained
for a system in thermal equilibrium and the same average
energy, calculated using QMC simulations [23].

At the critical point, V � Vc, Fig. 2(a), the MDFs for the
two initial states coincide with each other, to within the
accuracy of the calculations (approximately the symbol
size) or less. Therefore, information about the initial state
is not preserved in this quantity, consistent with the expec-
tation for an ergodic evolution. However, the difference
from the thermal distribution is significant; thermalization
is not attained. The left inset shows the time evolution of
hnki�t� for k � � for both initial conditions, demonstrating
that the system reaches a quasistationary state. A small, but
discernible shift from the thermal value (horizontal line)
can also be seen for both initial conditions, even at k � �.
In the right inset, the points with the largest differences just
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FIG. 1 (color online). Time evolution of an initial LL state
(V0�0:5) in the strong coupling limit with V � 100 for L�100
sites at the times indicated. Inset: spectral analysis of hn��t�i.
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FIG. 2 (color online). Time-averaged momentum distributions
when quenching (a) from V0 � 0:5 to V � 2 (quantum critical
point) and (b) from V0 � 1:5 to V � 5 (insulator) for L � 50
sites. The time averages of two independent initial states with the
same energy are compared to each other and to the thermal
expectation value. In the right inset, results for L � 50 (*) are
compared to L � 100 (5) for the regions with the largest
differences. As a reference, finite T data for L � 50 (dotted
line) and L � 100 (dashed line) are shown. Left insets: hn�i
versus time t; the horizontal line is the finite T value.
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below the Fermi vector kF � �=2 are plotted when the
system size is doubled from L � 50 to L � 100. An analy-
sis of the data for L � 100 does not alter our conclusion.

In order to investigate the importance of quantum criti-
cality, we have also examined the behavior for V � 1:5 and
V � 2:5 (not shown), i.e., below and above the transition
point. We find almost identical behavior, indicating that the
lack of thermalization is not associated with the quantum
critical point. Note, however, that the LL regime (V < 2)
is, in a sense, generically critical.

For V � 5, Fig. 2(b), all three curves show small, but
significant differences. This means that the time evolution
starting from different initial states can be distinguished
from each other as well as from the thermal state; i.e.,
neither relaxation to one distinguished quasistationary
state nor thermalization occurs. For this case, j V0 � V j
is larger than for V � 2, and, in addition, the values of V0

necessary to obtain the same energy in the initial state
(V0 � 1:5 and V0 � 44:2165) differ strongly. This sug-
gests that the initial states are far apart from each other
in some sense, a notion that will be made more precise
below.

The differences with the thermal distribution increase
for larger j V0 � V j . As can be seen in Fig. 3 for V � 10,
the difference between the time average and the thermal
distribution is significant, clearly confirming that thermal-
ization does not occur. The differences observed increase
gradually as a function of j V0 � V j , ruling out a transi-
tion as suggested for the Bose-Hubbard model [6].

In order to investigate the impact of the lack of integra-
bility on thermalization, we now extend our model (1) by
turning on a next-nearest-neighbor interaction. In Fig. 4,
we display results with V0 � 0:5 and V0 � 2:46689 (zero
NNN interaction), and the quenched evolution at V � 2,
V2 � 0:4. As in the integrable case, both initial states lead
to indistinguishable time-averaged MDFs, but ones that are
significantly different from the thermal one, showing dif-
ferences very similar to those in Fig. 2(a). When V0 � 0:5
and V � 10, V2 � 1 (not shown) the difference from the
thermal state is comparable to the case shown in Fig. 3.

Therefore, the nonthermal nature of the emerging steady
state is clearly not related to the integrability of the system.

In order to shed light on the numerical results presented
above and to characterize the quasistationary state, we
consider a generalized ensemble in which the expectation
values of higher moments of Ĥ, which are constants of the
motion, are taken as constraints. Note that the usual ther-
mal density matrix %̂� is uniquely fixed by the single
constraint hĤi� � hĤi. Rigol et al. [7] find a generalized
Gibbs ensemble, in which the density matrix is deter-
mined by maximizing the entropy taking into account the
constraints, to be an appropriate choice [7,14,15]. The
general form of the statistical operator is then %̂ �
exp
�

P
n�nÔn�, where the operators Ôn form a set of

observables whose expectation values remain constant in
time. The values of the �n are fixed by the condition that
Tr�%̂Ôn� � hÔni, with Ô0 � 1 to enforce normalization. In
some special cases like hard-core bosons in one dimension
[7,15] or the Luttinger model [8], constants of motion can
be found in terms of operators in second quantization.
However, this is not possible for Bethe-ansatz-integrable
systems. For any closed system, however, the quantities
Ôn � Ĥn can be used. Taking all powers as constraints
would unambiguously fix all correlation functions to all
lengths. For a finite system, it can be shown that %̂ is
fully determined by dim�Ĥ� powers of Ĥ [22], for Ĥ
with a bounded spectrum. The statistical expectation
value of any observable is then given by Tr�%̂ Ô� �P
�jh�j 0ij

2h�jÔj�i (for a nondegenerate spectrum),
where j 0i is the initial state and j�i are the eigenstates
of Ĥ. It can easily be seen that the right-hand side of this
expression equals the time average of hÔi�t�.

We now investigate the extent to which the statistical
expectation value within the generalized Gibbs ensemble
approaches the time average of the evolution after a quench
by studying the energy distribution for a given state j i,
defined as P �E� �

P
���E� ���jh�j ij

2, which is nor-
malized if h j i � 1. The energy distribution in the gen-
eralized Gibbs ensemble can analogously be defined as
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FIG. 3 (color online). Time-averaged momentum distribution
hnki for V � 10. Inset: hn�i versus time t; the horizontal line is
the finite-T value.
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FIG. 4 (color online). Comparison of QMC and time-averaged
values of the momentum distribution hnki for the nonintegrable
case with V � 2 and V2 � 0:4. Inset: the same as in Fig. 3.
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PG�E� � Tr��E� Ĥ�%̂, with %̂ as defined previously. In
Fig. 5, we show P �E� calculated using full diagonaliza-
tion on L � 16 sites for an initial state V0 � 0:5 evolved at
the quantum critical point V � 2 compared with the dis-
tribution in the Gibbs ensemble PG�E� as the number of
constraints is increased from 1 to 3. It is evident that
increasing the number of constraints systematically im-
proves the agreement and that only a small number of
moments are necessary to obtain very good agreement.

The distance between two distributions can be estimated
using the moments of the absolute differences, �n �R
dEEn j P�E� � P0�E� j . Taking �0=W, with W the

bandwidth of Ĥ, as an estimate of j P�E� � P0�E� j , we
see that the difference between moments of Ĥ for two
different energy distributions P and P0 can be estimated as

 hĤniP � hĤ
niP0 � �n ’

1

n� 1
Wn�0: (2)

Therefore, if the distance between the distributions �0 �

1, then the relative difference of the moments �hĤniP �

hĤniP0 �=Wn <�0=�n� 1� will also remain small, and ob-
servables will converge to values close to each other after a
quench. For the cases of evolution with metallic and in-
sulating initial states discussed above, we obtain �0 �
0:124 39 for V0 � 0:5 and V0 � 3:574 63 (V � 2), and
�0 � 0:415 21 for V0 � 1:5 and V0 � 44:2165 (V � 5).
On the other hand, comparison of P with the thermal dis-
tribution P� yields �0 � 0:685 81 (V0 � 0:5, V � 2), and
�0 � 1:246 16 (V0 � 1:5, V � 5), respectively. Thus, the
distance between the thermal distribution and the one de-
fined by the initial states is always larger than those defined
by the pair of initial states with the same energy, supporting
our observation that thermalization does not occur.

In summary, our adaptive time-dependent density-
matrix renormalization group simulations of the time evo-
lution of a system of correlated spinless fermions after a
quantum quench have exhibited the following generic
behavior: Independently of its integrability or criticality,
the system relaxes to a nonthermal quasistationary state.
Observables relax to the same value when different initial
states have the same energy and are sufficiently close to

each other; i.e., the memory of the initial state is lost in the
observables after relaxation. ‘‘Closeness’’ can be quanti-
fied using a measure �0 which is based on the energy dis-
tributions defined for the initial state or for a given density
matrix. Increasing the number of constraints (moments of
Ĥ) in a generalized Gibbs ensemble leads to convergence
to the energy distribution defined by the initial state.
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