PRL 98, 210402 (2007)

PHYSICAL REVIEW LETTERS

week ending
25 MAY 2007

Equilibrium and Nonequilibrium Dynamics of the Sub-Ohmic Spin-Boson Model

Frithjof B. Anders,' Ralf Bulla,” and Matthias Vojta®

YFachbereich Physik, Universitiit Bremen, 28334 Bremen, Germany
“Theoretische Physik III, Elektronische Korrelationen und Magnetismus, Universitiit Augsburg, 86135 Augsburg, Germany
3nstitut fiir Theoretische Physik, Universitdit zu Koln, Ziilpicher Strafie 77, 50937 Koln, Germany
(Received 1 August 2006; revised manuscript received 6 February 2007; published 24 May 2007)

Employing the nonperturbative numerical renormalization group method, we study the dynamics of the
spin-boson model, which describes a two-level system coupled to a bosonic bath with a spectral density
J(w) = w®. We show that, in contrast with the case of Ohmic damping, the delocalized phase of the sub-
Ohmic model cannot be characterized by a single energy scale only, due to the presence of a nontrivial
quantum phase transition. In the strongly sub-Ohmic regime, s < 1, weakly damped coherent oscillations
on short time scales are possible even in the localized phase—this is of crucial relevance, e.g., for qubits

subject to electromagnetic noise.
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Models of quantum dissipation [1,2] have gained sig-
nificant attention over the last years, due to their wide
range of applications from the effect of friction on the
electron transfer in biomolecules [3] to the description of
the quantum entanglement between a qubit and its environ-
ment [4,5] (for further applications see Refs. [1,2]).

The simplest quantum-dissipative models belong to the
class of impurity models and consist of a small quantum
system coupled to a bath of harmonic oscillators. One
familiar bosonic impurity model is the spin-boson model,

A

H= ~5 -i-%a'Z + Zwiaja,- +%Z)t[(a,~ + a?). (D

It describes a generic two-level system, represented by the

Pauli matrices o, which is linearly coupled to a bath of

harmonic oscillators, with creation operators a;r and fre-

quencies w;. The bare tunneling amplitude between the
two spin states |1), ||) is given by A, and € is an additional
bias (which is zero in the following, except for the prepa-
ration of the initial state as discussed below). The coupling
between spin and bosonic bath is specified by the bath
spectral function J(w) = 73 ;A?8(w — w;). The asymp-
totic low-temperature behavior is determined by the low-
energy part of the spectrum. Discarding high-energy de-
tails, the standard parametrization is

J@)=2ma0l e, 0<0<wo, s>=1, @)

where the dimensionless parameter « characterizes the
dissipation strength, and w, is a cutoff energy.

In case of Ohmic dissipation, s = 1, a quantum transi-
tion of Kosterlitz-Thouless type separates a localized phase
at o = «a,, displaying a doubly degenerate ground state,
from a delocalized phase at & < a, with a unique ground
state [1,2]. The delocalized regime is characterized by a
finite effective tunnel splitting, A,, between the two levels,
whereas the tunnel splitting renormalizes to zero in
the localized phase. For A < w, the transition occurs at
a, = 1.
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The sub-Ohmic case, s < 1, [5—-9] turns out to be differ-
ent. For A/w. — 0 the system is localized for any nonzero
coupling [1,2], but for large A a delocalized phase was
argued to exist [6,7]. We have recently [8] shown, using an
extension of the nonperturbative numerical renormaliza-
tion group (NRG), that a continuous quantum phase tran-
sition (QPT) occurs for all 0 < s < 1, in contrast to earlier
proposals [6]. The numerically determined equilibrium
phase diagram is shown in Fig. 1.

Detailed studies of nonequilibrium properties, like the
quantity P(z) = (o (¢)) for a spin initially prepared in the
|T) state, have mainly covered the Ohmic damping case for
small A [1,10,11]. Here, weakly damped oscillations can
only be observed for a < 1/2, whereas 1/2 < a < 1 leads
to overdamped behavior, i.e., exponential decay of P(r) to
zero. Finally, in the localized phase, a > 1, P(f) decays to
a finite value. Studies of the dynamics in the sub-Ohmic
case have so far been restricted to the use of perturbative
methods [12]. Considering that these miss the QPT and the
localized phase present for s << 1, the validity of the cor-
responding results is questionable.
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FIG. 1 (color online). Zero-temperature phase diagram of the
spin-boson model from NRG [23], for fixed A = 0.1 and w, =
1. The axes denote the bath exponent s and the dissipation
strength a. The circles indicate the parameter values for which
results will be presented in this Letter.
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The purpose of this Letter is to provide nonperturbative
results for the dynamics of the sub-Ohmic spin-boson
model, for the whole range of model parameters. Our
main results can be summarized as follows: Whereas the
delocalized phase of the Ohmic model is dominated by a
single energy scale, A,, only, the sub-Ohmic model is more
complicated due to the presence of a second-order QPT.
Near the transition a quantum critical (QC) crossover scale
T* appears [8], which—in the strongly sub-Ohmic re-
gime—coexists with a larger scale A, that can still be
identified with the renormalized tunnel splitting. As we
demonstrate below, T* vanishes at the transition to the
localized phase, whereas A, stays finite. The latter fact is
crucial for the nonequilibrium dynamics: we find the pres-
ence of coherent weakly damped oscillations, with fre-
quency A,, even in the localized phase, a > «., for
s <« 1. This is particularly relevant for the case s = 0,
related to so-called 1/f noise in an electromagnetic envi-
ronment. Here, the equilibrium spin-boson model is always
in the localized phase; however, coherent oscillations are
still possible for small « and short times.

NRG.—We employ Wilson’s NRG method [13] to study
the sub-Ohmic spin-boson model, utilizing two recently
developed extensions: (i) Refs. [8,14] generalized the NRG
at thermodynamic equilibrium to impurity models with a
bosonic bath; (ii) Ref. [15] proposed an algorithm to study
nonequilibrium dynamics in real time and applied it to the
Anderson and Kondo models. (For an earlier nonequilib-
rium NRG approach see Ref. [16].) The time-dependent
NRG provides a spectral representation of the time-
independent Hamiltonian H/, governing the time evolution
for t > 0, at all energy scales using a complete basis set,
and expresses the real-time dynamics of observables in
terms of a summation over reduced density matrices [15].
The latter contain all information on decoherence and
dissipation. Two independent bosonic NRG runs [14] are
required, one for the initial density matrix and the other for
the approximate eigenbasis of H/. In order to accurately
simulate the continuum limit with a NRG chain of finite
length, we average over N, different bath discretizations
for a fixed discretization parameter A. All numerical re-
sults below are for temperature 7 = 0, unless otherwise
noted.

Renormalization group flow and crossovers.—To set the
stage, we summarize the renormalization group flow of the
spin-boson model [8,14,17]. In the following, the terms
localized (delocalized) are defined through the impurity
entropy [14,18] being In 2 (zero). Note that this has to be
contrasted with localization in the sense that a system
initially prepared with the impurity spin in one specified
direction remains in this spin state under time evolution.
For any finite temperature, thermal excitations destroy
localization in this sense (see Ref. [1]). For a discussion
of this point, in particular, the connection between NRG
flow and thermodynamic properties, see Secs. Il and IV in
Ref. [14].

In the Ohmic case, the flow for @ < «, is from the
localized towards the delocalized phase (upon lowering
the energy), with A, being the crossover energy scale.
Thus the behavior for energies or temperatures below A,
is delocalized, Fig. 2(a).

For 0 < s <1 the critical fixed point controls the phys-
ics of the QC region. It is bounded by crossover lines T o
| — a,|” and covers a large portion of the phase diagram
due to the large value of the correlation length exponent v,
Fig. 2(b). (In fact, v diverges both as s — 1~ and s — 0™
[17].) The critical fixed point merges with the localized
(delocalized) one as s — 1~ (s — 0%), implying that the
characteristics of the QC regime becomes more *“‘delocal-
ized” as s is decreased towards zero. For s not too close to
1 there also is a distinct crossover from the high-
temperature localized regime (T > A) to the delocalized
or critical regimes.

Consequently, for s = 0 and small « the flow is first
from localized to delocalized, with a crossover scale A,,
finally to the localized fixed point (which controls the
ground state for any «)—the latter crossover is character-
ized by the scale T*, with T* ~ w_ exp(—A/aw,). As
shown in Fig. 2(c), the low-energy crossover at s = 0 is
thus opposite to the one at s = 1!

In general, we may expect coherent, weakly damped
dynamics, with a rate A,, in the delocalized regime (and
in the QC one for small s as well).

Equilibrium dynamics.—Let us focus on the Fourier
transform C(w) of the symmetrized equilibrium correla-
tion function C(¢) = %<[0’Z(l‘), 0. ]+). We start by noting the
low-frequency asymptotics: In the delocalized phase
C(w) « w* [6,19], whereas in the localized phase C(w)
displays a AS(w) contribution, which reflects the doubly
degenerate ground state, and A plays the role of an order
parameter (equivalent to the thermodynamic expectation
value (o,)). Turning to the finite-frequency behavior, our
numerics for s = 1 reproduces the well-known results (see
Sec. V in Ref. [14]); i.e., C(w) is dominated by a single
peak at A, which shifts to lower frequencies with increas-
ing « and disappears at the transition, @« = «,.. (Results for
s down to 0.8 are qualitatively similar.)

For smaller s, the influence of the critical fixed point
becomes increasingly visible, see Fig. 3(a) for s = 0.5. For
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FIG. 2 (color online). Schematic crossover diagrams for the
spin-boson model for different bath exponents s, deduced from
NRG, with regimes of localized, delocalized, and QC behavior.
The open dots denote QPTs, for details see text. (Note that the «
scale is different for the three panels.)

210402-2



week ending
PRL 98, 210402 (2007) PHYSICAL REVIEW LETTERS 25 MAY 2007
-0 —01 . . . . .
a)l;2 0 5"' b) leZO ‘ ‘ ‘ 10 3 5k .
o
10! ~ 1F 1~
1 3 o \ 3
30 S T 25F ]
T | 0.1F 1
10" 5
001 . . . 0 . .
102 Bt it it 0% 10 100" 10* 10° 0 0.1 0.2
10° 10° 10* 107 107 10" 10° 0 )

®

FIG. 3 (color online). Equilibrium spin correlation function
C(w) for (a) s =0.5 and « = 0.02, 0.06, 0.09, 0.10, 0.107,
0.11; (b) s = 0.1 and a = 0.002, 0.004, 0.006, 0.007, 0.01; the
thick curves are very close to the critical point (for s = 0.5 we
find a, = 0.1065 and s = 0.1, ¢, = 0.0071). The curves corre-
spond to the parameter values shown as circles in Fig. 1. (The
peak width at small « is an artifact of the NRG broadening.)

small a we observe that C(w) is dominated by a peak close
to A, as expected. However, with increasing a weight is
transferred to smaller frequencies, leaving a shoulder fea-
ture close to A intact. For ¢ < «,, C(w) has a pronounced
peak at w ~ T*—this peak separates the QC divergence
C(w) * w™* at intermediate energies from the low-energy
w* behavior. At criticality, T* — 0, and C(w) * »™* down
to lowest energies.

A further decrease of the bath exponent s—see Fig. 3(b)
for s = 0.1—shows that the high-frequency peak in the
vicinity of A is suppressed more slowly upon increasing «,
reflecting the fact that the QC behavior is more delocalized
for small s. In particular, this peak, which is usually taken
as indication for the presence of coherent weakly damped
dynamics, survives even for o > «,.

Figure 4 for s = 0O illustrates this fact: here the ground
state is localized for any s, but a well-defined peak at A, is
visible for all & < 0.05 (for A/w, = 0.1). Further, there is
a low-energy peak at T* for small «, in addition to the
Aé(w) contribution (not plotted) characteristic of the lo-
calized phase.

Parenthetically, we note that the low-energy part of
C(w, T) near @ = «, is expected to show universal scaling
behavior, including /T scaling, as the critical fixed point
obeys hyperscaling properties for all 0 <s <1 [17].

Nonequilibrium dynamics.—We now present results for
P(7), obtained with the nonequilibrium generalization of
the NRG [15]. The spin is prepared in the |1) state, by
calculating the equilibrium density matrix of the initial
Hamiltonian H' with a large spin polarization energy
€/w, =100 and A = 0. At r = 0, € is switched off, and
A is set to A/w, = 0.1. This defines H/, governing the
time evolution of the initial density operator.

Figure 5 shows P(¢) for s = 0.5, A/w, = 0.1, and vari-
ous values of «. For weak coupling, i.e. « < «,, a damped
oscillatory behavior is found. Increasing a suppresses the
oscillations at longer time scales but maintains the initial
ones. A very shallow oscillation at short times can be seen
even for @ > a, which is consistent with the C(w) data

FIG. 4 (color online). Equilibrium spin correlation function
C(w) for s =0 and a = 0.003, 0.005, 0.007, 0.01, 0.02. Both
panels show the same data, but the right one has a linear w scale.
The AS(w) contribution is not shown.

presented in Fig. 3. For a > a, P(t) shows only a very
weak time dependence for intermediate times and is ex-
pected to approach a finite value P(co) for r— oo, an
indication of localization (see below).

Let us now turn to s = 0, Fig. 6. Even though any finite
value of a places the model in the localized phase in
equilibrium, the nonequilibrium dynamics of P(¢) clearly
exhibits oscillatory behavior for small «. Roughly speak-
ing, the time evolution mimics the RG flow and thus
corresponds to a reduction of temperature in the phase
diagram Fig. 2(c): At short times the physics is governed
by the delocalized fixed point; it crosses over to the local-
ized fixed point at long time scales. Upon increasing « the
time scale of the crossover from oscillatory to damped
behavior in P(¢) is reduced, consistent with the low-
temperature crossover line in Fig. 2(c).

For small damping, the decay of the P(r) oscillations is
exponential. Comparing the decay rate with the popular
Bloch-Redfield approach [20] gives deviations of less than
10% for s = 0.1, @ = 0.002, but the agreement becomes
worse for larger o or smaller s. For all s <1 we observe
that with increasing « the frequency of the initial oscilla-
tions in P(r) first decreases (consistent with the result of
straightforward perturbation theory), but for larger a and
small s then slightly increases with «, indicating that one
leaves the perturbatively accessible regime. [C(w) in
Figs. 3 and 4, is inconclusive with respect to the peak
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FIG. 5 (color online). Time evolution of P(¢) for s = 0.5,
A/w. = 0.1, and various values of a (a, = 0.1065).
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FIG. 6 (color online). Time evolution of P(¢) for s =0,
A/w. = 0.1, and various values of a («, = 0 here).

position due to the logarithmic broadening with the
NRG.]

The long-time limit P(c0) measures the ‘“degree of
localization” equivalent to the order parameter (o) in
equilibrium [and proportional to the A-coefficient of the
S(w) contribution to C(w)]. P(o0) vanishes continuously at
the transition for any 0 = s < 1. [For the smallest value of
a shown in Fig. 6 for s = 0 (o = 0.003), the P(¢) oscillates
around P(o0) = 0.1.] Note the difference to the Ohmic
case, s = 1, where P(o0) jumps from a finite value for o >
a, to zero a < a,.

A few remarks are in order. On general grounds, one
may expect a power-law decay in the long-time limit of
P(r) at the critical point, @ = a,, for all 0 <s < 1. This
power law will be cutoff away from criticality, on a time
scale o 1/T*. At present, the accuracy of the numerical
data in nonequilibrium is not sufficient to verify this. Since
the short-time behavior of P(¢) is dominated by the high-
energy properties, i.e., by A,, small but finite temperatures
do not alter the response on time scales shown in Figs. 5
and 6. At finite T we only observe a decay of P(t) to zero
for long times and parameters corresponding to the local-
ized phase (not shown).

Summary.—We have studied the dynamics of the sub-
Ohmic spin-boson model, both in equilibrium and non-
equilibrium, using nonperturbative numerical renormaliza-
tion group techniques. The model displays a continuous
QPT for all bath exponents 0 <<s <1, and this leads to
highly nontrivial dynamical properties. In contrast to the
Ohmic situation, the sub-Ohmic case cannot be character-
ized by a single energy scale only. This is particularly
striking for s << 1: while the low-energy, long-time behav-
ior is dominated by the presence of nearly critical fluctua-
tions over a large regime of parameters, the behavior at
short times or elevated energies derives from weakly re-
normalized tunneling, which can be coherent even in situ-
ations with a localized thermodynamic ground state.

Our results imply that perturbative methods, only cap-
turing the renormalized coherent tunneling, may be applied
to the sub-Ohmic model at short times, but clearly fail in
the long-time limit. Furthermore, approximations aiming

on a description of the spin-boson physics in terms of a
single energy scale A, only, as done in Refs. [6,9], are not
applicable in the strongly sub-Ohmic regime. Last but not
least, let us emphasize that the sub-Ohmic situations of s =
1/2 and s = 0 are of immediate experimental relevance,
e.g., for the description of electromagnetic transmission
lines [21] and general 1/f noise, respectively. Further-
more, s = 1/2 baths may be realized in the context of
effective impurities in ultracold gases [22].
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