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We study magnetism in magnetically doped quantum dots as a function of the confining potential,
particle numbers, temperature, and strength of the Coulomb interactions. We explore the possibility of
tailoring magnetism by controlling the nonparabolicity of the confinement potential and the electron-
electron Coulomb interaction, without changing the number of particles. The interplay of strong Coulomb
interactions and quantum confinement leads to enhanced inhomogeneous magnetization which persists at
higher temperatures than in the noninteracting case. The temperature of the onset of magnetization can be
controlled by changing the number of particles as well as by modifying the quantum confinement and the
strength of the Coulomb interactions. We predict a series of electronic spin transitions which arise from
the competition between the many-body gap and magnetic thermal fluctuations.
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Magnetic doping of semiconductor quantum dots (QDs)
provides an interesting interplay of interaction effects
in confined geometries [1-9] and potential spintronic ap-
plications [10]. In the bulklike dilute magnetic semicon-
ductors, the carrier-mediated ferromagnetism can be
photoinduced [11,12] and electrically controlled by gate
electrodes [13], suggesting possible nonvolatile devices
with tunable optical, electrical, and magnetic properties
[10]. QDs allow for a versatile control of the number of
carriers, spin, and the effects of quantum confinement
which could lead to improved optical, transport, and mag-
netic properties as compared to their bulk counterparts
[1,14,15]. Unlike in the bulk structures, adding a single
carrier in a magnetic QD can have important ramifications.
An extra carrier can both strongly change the total carrier
spin and the temperature of the onset of magnetization
which we show can be further controlled by modifying
the quantum confinement and the strength of Coulomb
interactions.

We study the magnetic ordering of carrier spin and
magnetic impurities in (II,Mn)VI QDs identified as a ver-
satile system to demonstrate the interplay of quantum
confinement and magnetism [4—7,16—19]. Because Mn is
isoelectronic with group-II elements, it does not change the
number of carriers which in QDs are controlled by either
chemical doping or by an external electrostatic potential
applied to the metallic gates. The latter allows confinement
of the carriers in a dot with tunable size and shape [2]. By
using real space finite-temperature local spin density ap-
proximation (LSDA) [20], we study temperature (T) evo-
lution of magnetic properties of QDs over a large
parameter space. This approach allows us to consider
QDs with varying number of interacting electrons (N)
and Mn impurities (V,,) which already for small N and
N,, becomes computationally inaccessible to the exact
diagonalization techniques [19,21]. We extend the pre-
vious studies of Coulomb interactions in magnetic QDs
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with N, =1, 2 at T =10 [19], and T > O results using
either Thomas-Fermi approximation or by applying
Hund’s rule with up to 6 carriers [18]. We reveal that the
interplay of strong Coulomb interactions and quantum
confinement leads to enhanced inhomogeneous magneti-
zation which persist at higher temperatures than in the
noninteracting case and the bulk structures [17,18]. We
refer to such a spin-polarized state in QD at zero applied
magnetic field as “ferromagnetic’ state [17-19].

Here, we focus on magnetic QD in zero applied mag-
netic field described by the Hamiltonian H = H, + H,, +
H.,, with the electron contribution

N 2 2
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where 7 is the Planck constant, m™ is the electron effective
mass, and Ugp(r) is the confining potential of a three-
dimensional QD. The last term in Eq. (1) is the repulsive
electron-electron (e-¢) Coulomb interaction screened by
the dielectric constant €, —e is electron charge, and vy
accounts for reduction of Coulomb strength due to screen-
ing effects of the gate electrodes [22]. The Mn Hamiltonian
is H, = Z,,I/Jﬁﬁ[, - My, where JAF is the direct Mn-Mn
antiferromagnetic coupling. The z-component of M ; of
impurity spin satisfies M, = —M, —M + 1,..., M, where
we choose £ as the quantization axis and M = 5/2 for Mn.
The electron-Mn (e-Mn) exchange Hamiltonian is H,, =
—JsadirSi M,5(r; — R,), where J is the exchange cou-
pling between electron spin 5;, at r; = (p,, z;), and impu-
rity spin M 1> at R;. An effective mean field Hamiltonian
describing electrons can be obtained by replacing the Mn
spins that are randomly distributed, with a classical con-
tinuous field HS" = H, — ¥ Jqn,, (M, (r,)), where n,, is
the averaged density of Mn, and o = =1 for spin up (1)
and down (| ). The effective magnetic field seen by the
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electrons is the mean field induced by Mn. Assuming that
impurities are in equilibrium with thermal bath, it follows
(M_(r;)) = MBy(Mb(r;)/kgT) where By(x) is the
Brillouin function [23] and kjp is the Boltzmann constant.
Here, b(r;) = _ZMnJAF<Mz(ri)> + Jgalny(r;) — ny(r)]/2
is the effective field seen by the Mn [24]. The first term
in b(r;) describes the mean field of the direct Mn-Mn
antiferromagnetic coupling [17]. Zy, is the averaged Mn
coordination number, and n,(r;) is spin-resolved electron
density. We decompose the planar and perpendicular com-
ponents of the confining potential of a single QD and fit it
to a realistic QD potential [25]. The resulting potential,
Uqp. is a sum of a two-dimensional (2D) Gaussian Vg =
Vyexp(—p?/A?) and one-dimensional parabolic potential
Vép = m*Q?z2/2, where p = (x, y). For Vqp, we find that
the Gaussian potential provides a convenient parameteri-
zation [25] of a nonparabolic confinement which, as we
show here, leads to additional magnetic transitions in QDs
[26]. Here, V, and () are the planar depth of the QD
minimum and the characteristic subband energy associated
with the perpendicular confinement. In typical disk-shaped
QDs and low density of electrons, only the first subband is
filled. After expanding the QD wave functions in terms of
its planar i;,(p) and subband wave function £(z), we
project HS into a 2D Hamiltonian by integrating out
&(z). In LSDA, the two-body Coulomb interaction can be
written as the sum of Hartree potential V and spin depen-
dent exchange-correlation potential Vg.. We use Vosko-
Wilk-Nusair exchange-correlation functional [20] and ex-
press the Kohn-Sham Hamiltonian as

2
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and J,,, = Jyn,,M is the e-Mn exchange coupling. The

Kohn-Sham eigenvectors and eigenvalues of Eq. (2),
,-(p), and €,, are calculated numerically.

We illustrate our findings and the iterative solutions of
Eq. (2) for (Cd,Mn)Te QD. The material parameters are
Jq = 0.015 eVnm?, m* = 0.106, € = 10.6 [19]. The pla-
nar (x, y) and perpendicular (z) dimensions of the QD are
taken as 42 nm and 1 nm with n,, = 0, 0.025, 0.1 nm 3,
and Zy,JAF = 0.005, 0.02 meV for n, = 0.025, and
0.1 nm™3. In the central region of QD of area 4aj’, where
ap = 5.29 nm is the effective Bohr radius in CdTe, n,, =
0.1 nm™3 corresponds to =~ 10 Mn atoms. For a planar
confinement, Vap, we consider a Gaussian potential with
Vo= —128 meV and A = 38.4 meV, corresponding to
w, = 27 meV. Here, w is calculated by expanding Vp
in the vicinity of the minimum which yields Vop = V) +
m*w}p?/2 + ..., with the strength w, = /2[V,|/m*/A.

In QDs, electron density is inhomogeneous, implying
that both the electron spin density, n;(5) — n;(p), and Mn-

magnetization density, (M_.(p)) = Mh(p)/J .., are inho-
mogeneous. For N = 8 and n,, = 0.1 nm™3, we show the
self-consistent spin density in Fig. 1(a) and Mn-
magnetization density in Fig. 1(b). Outside the QD,
n,(p) decays exponentially, and an effective field 5(p)
seen by Mn becomes negligible. This is consistent with
vanishing (M. (p)) at the QD boundary [Fig. 1(b)].

We next turn to spatially-averaged quantities such
as Mn-magnetization per unit area A, (M,) =1 X
i d2p<Mz(/3)>, electron (spin) polarization P =
(Ny — N))/N, and the z-component of the total spin of
electrons, s, = (N; — N})/2. In Fig. 2, we show (M) as
a function of N for n,, = 0.025 nm ™3, and both noninter-
acting (y = 0) and interacting (y = 1) electrons [recall
Eq. (1)]. The magnetic behavior of QD can be described
based on the interplay of the many-body spectrum (deter-
mined by the shell structure of the confining potential and
e-e Coulomb interaction) and the strength of e-Mn ex-
change coupling J,,,. In the following, we summarize the
spin structure of the QD in the absence and presence of J,,,
with y =0, 1.

(1) J.n = 0: The shell structure of the 2D Gaussian
potential is shown in Fig. 2(a). The energy gap between
s-, p-, and d-orbitals is characterized by w. In contrast to
2D parabolic potential [1,2], d-shell levels are not com-
pletely degenerate, and therefore we focus on N > 6 states.
Degenerate levels d, and d_ are separated by an energy
gap (1.5 meV) from dy-level, where =, O refer to angular
momentum /, = *£1, 0. However, e-e interaction changes
the structure of d-shell as it overturns the ordering of the
d-orbitals, e.g., the Kohn-Sham energies of a pair of de-

FIG. 1 (color online). The spatial density profile of electron
spin density (a) and Mn-magnetization (b) for QD with N = 8 at
T=1K, y=1, and n, = 0.1 nm~3. Coordinates (x,y) are
expressed in effective Bohr radius.
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FIG. 2. The averaged magnetization per unit area (M) as a
function of number of electrons N at T = 1 K and Mn-density
n,, = 0.025 nm™3 for noninteracting (y = 0, empty triangles)
and interacting (y = 1, filled triangles) electrons. The ground
state of the QD switches between ferromagnetic and antiferro-
magnetic states as a function of N. Coulomb interaction changes
the state of N = 8 from antiferromagnetic to ferromagnetic state.
(a) The schematic single particle levels of a 2D Gaussian
confining potential. (b) The z-component of the total spin of
electrons, s,, as a function of N for y=1. (¢) Ant-
ferromagnetic-ferromagnetic transitions for N = 8 as function
of n,, and .

generate d, and d_ are below d, (with energy gap
~ 1 meV). Because of d-shell overturning, N = 10, 12
form closed shells with s, =0, and N =7, 9, 11 form
open shells with s, = 1/2. The N = 8 corresponds to a
half-filled shell with s, = 1, and electron polarization, P =
2/8. The evolution of s, as a function of N for y =1 is
shown in Fig. 2(b) (open circles).

@) J,, # 0: ¥y =0 and increasing e-Mn coupling to
Jom = 3.75 meV, leads to transitions P = 0/8 — 2/8, and
P=1/9—3/9for N = 8,and 9, whereas N = 10 shows
P =2/10. For y = 1, the dependence of P on J,, is
negligible in s-, and p- shells. In contrast, in d-shell, we
find transitions P =1/9 — 3/9, and P = 0/10 — 2/10
for N =9 and N = 10 at low T. However, we find no
change in P for N =7, 8, 11, and 12. Figure 2(b) (filled
circles) shows s, as a function of N for n,, = 0.025 nm >
(Jem = 0.94 meV). Increasing the density of Mn to n,, =
0.1 nm~ (J,,, = 3.75 meV) does not change s..

In Fig. 2, we observe that (M.) =0 in closed shells
(N = 2,6, 12) for both ¥y = 0 and y = 1 because of well
separated s-, p-, and d- orbitals due to large wq(= 30J,,,).
Comparing (M) between y = 0 and y = 1, one can ob-
serve that the e-e interaction stabilizes the ferromagnetic
state due to the spin Hund’s rule. This condition is easily
satisfied for open shells where the maximum electron
polarization is obtained in half-filled shell with N = 4.
The N = 8 state (recall Fig. 1) is more interesting. Aty =
0, electrons fill single particle levels following the Pauli
exclusion principle. Even with J,,, = 0.94 meV (smaller
than single particle e-h excitation gap), N = 8 forms

closed shell and P = (M_) = 0. In the case of y =1,
and because of d-shell overturning, polarized electrons in
d, and d_ give P = 2/8 and finite (M_). We also see that
the maximum (M.) occurs at N =9 because J,, =
0.94 meV induces three polarized electrons in d-levels.
Figure 2(c) reveals the dependence of magnetic transitions
on y and n,,. With increasing Zy;,JAF, the transition to
ferromagnetic state occurs at larger y. Our findings clearly
demonstrate that the magnetism induced by strong
Coulomb interaction can be controlled by the nonparabo-
licity of the confinement potential and the gate voltage, or
by changing the semiconductor host (and thus changing €)
without changing the number of carriers confined in QD.
We also suggest that because of the sensitivity of the (M)
to the electronic spin transitions, the former can be used to
infer the spin of electrons and could be potentially applied
to manipulation of spin qubits in semiconductor nanostruc-
tures [10].

We next examine the temperature dependence of mag-
netism in QDs. In Fig. 3, we show (M) (a), P (b), and the
free energy difference AF between ferromagnetic and
antiferromagnetic states (c) for N =4 and N = 8. The
suppression of (M), shown in Fig. 3(a), is accompanied
by a series of spin transitions in electronic states and
suppression of P. At low T, the spin triplet is realized as
the ground state of the N =4 and N = 8 open p- and
d-shells (due to Hund’s rule). We define a characteristic
temperature, 7%, at which (M,) = P = AF = 0.

In Fig. 4, we plot T*(N) for wg = 27 meV and v = 1
which decreases nonmonotonically with N. The inset
shows T"(wy) for N=1and N =4 (y =0, 1). At low
wy, the e-e interaction strongly enhances 7™, while at large
wy, the effect of confinement potential is dominant. Thus,
we find T*(y = 1) — T*(y = 0) with increasing w,
which in turn gives rise to a peak in T*. Several trends in
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FIG. 3. Temperature evolution of Mn-magnetization per unit
area (M) (a), the electron polarization P (b), and the free energy
difference AF between ferromagnetic and antiferromagnetic QD
(c)fory =1andn,, = 0.1 nm~3. Atlow 7, N = 4, 8 form half-
filled shells with P = 2/4,2/8. T = T* characterizes vanishing
of (M), P, and AF.
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FIG. 4. T* as a function of N for interacting electrons y = 1,
n, =0.1nm3, w, =27 meV, and V, = —125 meV. Inset:
The dependence of T* on w, for N =1, N = 4 with v =0,
and y = 1. wy = 27 meV is marked as a dotted line. There is an
optimal confining potential which maximizes T*.

calculated T*(N, w,) can be obtained from a perturbative
approach by approximating 2D Gaussian with 2D para-
bolic potential. Near (M) = P = 0 for QD with one va-
lence electron in s-, p-, or d-shells, we find

T = Je,m/%:,b[fd3r|¢(f-(r)|4]'/2, where i is the wave
function of the highest occupied orbital, and JAF = 0. For a
given w,, T* decreases with N, e.g., Ty_; = 0.7Ty_, and
Ty—; = 0.6Ty_,. One can also show that T* = _/w, con-
sistent with bound magnetic polarons [27].

In conclusion, we have investigated the existence of
magnetism in magnetically doped QDs, as a function of
particle numbers, confining potential, temperature, and
strength of Coulomb interactions, using finite-temperature
LSDA. Our results show that QDs embedded in magnetic
semiconductor host can be considered as ferromagnetic
centers which exhibit spatial ordering in spin density and
magnetization, even at elevated temperatures where no
such ordering exists in the host material [28]. In the limit
of small w(, where the Coulomb interaction among parti-
cles is the largest characteristic parameter of the QDs, we
find magnetism substantially stronger than predicted from
the noninteracting picture. In contrast to the carrier-
controlled ferromagnetism in the bulklike structures [11-
13], we reveal that magnetism in QDs can be tuned even at
the fixed number of carriers by controlling the nonparabo-
licity of the confinement potential, gate voltage, and the
interparticle Coulomb interaction screening. For potential
spintronic applications based on II-VI magnetic QDs, we
anticipate that it is possible to further increase the magne-
tization and the temperature at which it vanishes. In addi-
tion to exploring a larger hole-Mn exchange coupling [23]
in (ILMn)VI QDs, it would also be advantageous to con-
sider (II,Cr)VI QDs as there is a support for the room-
temperature ferromagnetism in their bulk counterparts
[29].
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