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We report the calculation of cavity exciton-polariton phase diagram including realistic structural
disorder. With increasing density polaritons first undergo a quasiphase transition toward a Bose glass:
the condensate is localized in at least one minimum of the disorder potential. A further increase of the
density leads to a percolation process of the polariton fluid giving rise to a Kosterlitz-Thouless phase
transition toward superfluidity. The spatial representation of the condensate wave function as well as the
spectrum of elementary excitations are obtained from the Gross-Pitaevskii equation for all the phases.
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Exciton-polaritons (polaritons) in microcavities are com-
posite 2-dimensional weakly interacting bosons [1,2].
Despite their short radiative lifetime (�10�12 s) stimulated
scattering toward their ground state has been demonstrated
[3–5], and quasithermal equilibrium was recently reported
[6,7]. In this quasiequilibrium regime cavity polaritons are
expected to give rise to a Kosterlitz-Thouless (KT) phase
transition toward superfluidity [8]. The corresponding
phase diagram was established a few years ago [9], and
recently refined to fully take into account the nonparabolic
shape of the polariton dispersion [10]. Because of their
light effective mass M (typically 10�4 times the free
electron mass) polaritons show extremely small critical
density and high critical temperatures that can be larger
than room temperature in some cases. However, semicon-
ductors were assumed to be ideal in the approach used in
Refs. [9–14]. In any case, Bragg mirrors fluctuations (pho-
tonic disorder) were not taken into account [15,16] while
experimental data clearly show strong localization of the
condensate because of structural photonic imperfections
[5–7]. The phase observed is in fact characteristic of a
Bose glass [17] and no signature of superfluidity has been
reported thus far. In this Letter we propose the derivation of
a new polariton phase diagram taking into account struc-
tural disorder whose impact on the spatial shape of the
wave function and the dispersion of elementary excitations
is analyzed within the framework of the Gross-Pitaevskii
theory [18].

To give a qualitative picture of the model, we assume
that the polaritons are moving in a random potential V�r�
whose mean amplitude and root mean square fluctuation
are given by hV�r�i � 0 and

���������������
hV2�r�i

p
� V0, respectively.

The correlation length of this potential is R0 ����������������������������������������R
hV�r�V�0�idr=V2

0

q
. As in any disordered system, there

are here two types of polaritons states [19]: the free prop-
agating states and the localized states with energy E< Ec,
where Ec is the critical ‘‘delocalization’’ energy. The lo-
calization radius scales like a�E� / a0V

s
0=�Ec � E�

s, s

being a critical index and a0 �
�����������������
@

2=MV0

p
[20]. In two

dimensions Ec is of the order of mean potential energy
(i.e., 0 in our case), and s � 0:75 [19]. The quasiclassical
density of states is D�E� � M=4�@2�1	 erf�E=V0�
 [21].

Clearly, noninteracting 2D bosons cannot undergo Bose-
Einstein condensation (BEC) as the number of particles
which can be fitted to all the excited states of the system is
divergent for any chemical potential �>�1. Also, the
deep localized states of polaritons have different localiza-
tion dimensions for excitonic and photonic parts and the
quasiclassical expression for the density of states D�E�
becomes inapplicable [22]. The situation is thus different
from the case of cold atoms trapped in a 2D power-law
potential, for which the renormalization of the density of
states makes ‘‘true’’ BEC possible [23]. Therefore, even in
the presence of disorder, BEC cannot take place strictly
speaking for cavity polaritons. However, it is possible to
define a quasiphase transition which takes place in finite
systems [9]. Indeed, for the finite-size L system there is a
finite number Ntrap of potential traps for polaritons, thus,
there is an energy spacing between the single-particle
states. The typical energy distance between the ground
and excited states of the finite-size system levels � under
the assumption of long-range potential is approximately
given by V0=Ntrap or @

2=2MR2
0, whichever is smaller. In

this framework the critical density is given by the total
number of polaritons which can be accommodated in all
the energy levels Ei of the disorder potential V�r� except
the ground one [9]:

 nc�T; L� �
1

L2

X
i�0

fB�Ei; E0; T�; (1)

where fB�E;�; T� is the Bose-Einstein distribution func-
tion, E0 is the lowest localized state energy.

To evaluate the critical density nc�T; L�, the discrete sum
is replaced by an integral in Eq. (1), and we find nc�T� �
D�E0�kBT ln�1=�1� e�=kBT�
 assuming D�E� is a smooth
function. Above this density all additional particles are
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accumulating in the ground state and the concentration of
condensed particles n0 satisfies n0 � n� nc, where n is
the total density of polaritons. It is not a real phase tran-
sition since the system has a discrete energy spectrum and
the value of the chemical potential never becomes strictly
equal to E0.

Interactions between particles become dominant once
the polaritons start to accumulate in the ground state. The
situation can be qualitatively described as follows: parti-
cles start to fill the lowest energy state which is therefore
blueshifted because of interactions (�� E0 > 0). Thus,
for some occupation number of the condensate the chemi-
cal potential reaches the energy of another localized state,
and this state starts in turn to populate and to blueshift. The
condensate, like a liquid, fills several minima of the po-
tential. It gives rise to the spatial and reciprocal space
pictures of Refs. [5–7]. A few localized states, covering
about 20% of the surface of the emitting spot, are all
emitting light at the same energy and are strongly popu-
lated. This characterizes a Bose glass [17]. This situation
occurs up to the achievement of the condition � � Ec.
This condition should be accompanied by a percolation of
the condensate which at this stage should cover 50% or
more of the sample (in the semiclassical representation).
The delocalized condensate becomes at this stage a KT
superfluid. More precisely, the different sides of the finite-
size system are linked by the phase coherent path.
Therefore we predict two quasiphase transitions driven
by temperature and particle density: first, with an increase
of the polariton density beyond nc�T� the system enters the
Bose glass phase, then with a further increase of the density
the polariton system becomes superfluid. The critical con-
dition � � Ec is valid only at low temperature where the
thermal depletion of the condensate is negligible.

The quantitative analysis can be carried out in the frame-
work of the Gross-Pitaevskii equation for the condensate
wave function ��r; t� which reads

 i@
@
@t

��r; t� �
�
�

@
2

2M
�	 V�r� 	 gj��r; t�j2

�
��r; t�;

(2)

where g is a constant characterizing the weak repulsive
interaction between polaritons. The stationary solution of
the Gross-Pitaevskii equation takes the form ��r; t� �
�0�r� exp��iEt=@�. Figures 1(a)–1(c) show the real
space distribution of the polaritons obtained from the
solution of the Gross-Pitaevskii equation. The parameters
are those of a realistic CdTe microcavity at zero detun-
ing. We have taken the polariton mass m�5�10�5m0,
where m0 is the free electron mass, and the interaction
constant g � 3Eba

2
B=Nqw, where Eb is the exciton binding

energy (25 meV in CdTe), aB � 34 �A is the exciton Bohr
radius, and Nqw � 16 is the number of quantum wells
(QWs) embedded in the microcavity. We have included
a random Gaussian disorder potential with V0�0:5 meV

and R0�3�m. Figure 1(a) corresponds to the non-
condensed situation. The spatial profile is given by the
statistical averaging over all occupied states, n�r� �P
jfB�Ej; T;��T��j�j�r�j2. Here the temperature is set to

T � 19 K, which corresponds to the effective polariton
temperature measured in [6]. In this case the total number
of particles is small and thus nonlinear terms in the Gross-
Pitaevskii equation can be neglected.

Once the quasicondensate is formed, and for moderate
temperatures, one can neglect the thermal occupation of
the excited states, and the spatial image of the polariton
distribution is given by the ground state wave function
which corresponds to the solution of Eq. (2). We show
the resulting density below and above the percolation
threshold in Figs. 1(b) and 1(c), respectively. As expected,
the condensate is localized in a few minima of the random
potential as shown in Fig. 1(b). In Fig. 1(c) the condensate
wave function still exhibits some spatial fluctuations con-
nected to disorder, but the condensate is nonetheless well
delocalized, covering the whole sample area.

To calculate the quasiparticle spectra shown in
Figs. 1(d)–1(f), we introduce a single-particle Green’s
function which takes the form

 G!�r; r0� �
X
j

�j�r��
y
j �r0�

@!� Ej
; (3)

where Ej and �j�r� are energies and eigenfunctions of the
elementary excitations [24], found numerically from
Eq. (2). The spectrum of elementary excitations is given
by the poles of the Green function in the (k; !) represen-
tation, and shown in the lower panels of Fig. 1. Figure 1(d)

 

FIG. 1 (color online). Spatial images (top panels) and quasi-
particle spectra (bottom panels) for a realistic disorder potential.
The figures shown correspond to densities 0, 6� 1010, and 2�
1012 cm�2. The solid (red) lines are only guides to the eye,
showing parabolic, flat, and linear-type dispersions. The color
map of (b) is the same as (c).
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shows typical parabolic dispersion broadened by the dis-
order potential. Figure 1(e) shows parabolic dispersion
with a flat part produced by the localization of the conden-
sate. The linear spectrum in Fig. 1(f) is the distinct feature
of the superfluid state of the system. Only the upper
Bogoliubov branch is shown. Figures 1(b) and 1(e) repro-
duce qualitatively the experimental observations of
Refs. [6,7], which are characteristics of the formation of
a Bose glass.

It is instructive to analyze both the variation of the
emission pattern and the quasiparticle spectrum in com-
parison with the behavior of the superfluid fraction of the
polariton system. The latter quantity can be calculated
using the twisted boundary conditions method [25].
Imposing such boundary conditions implies that the con-
densate wave function acquires a phase between the
boundaries, namely,

 ���r	Li� � ei����r�; (4)

where Li (i � x; y) are the vectors which form the rect-
angle confining the polaritons and � is the twisting pa-
rameter. The superfluid fraction of the condensate is given
by [25]

 fs �
ns
n
� lim

�!0

2ML2��� ��0�

@
2n�2 ; (5)

where �� is the chemical potential corresponding to the
boundary conditions Eq. (4) and �0 is the chemical poten-
tial corresponding to the periodic boundary conditions
(� � 0). In the case of a clean system, V�r� � 0, the plane
wave is the solution of Eq. (2) and �� ��0 �
n@2�2=2ML2: the superfluid fraction is fs � 1. On the
contrary, for the strongly localized condensate the wave
function is exponentially small at the system boundaries
and the change of the boundary condition (i.e., variation of
�) does not change the energy of the system, thus fs �
exp��L=a��0�
 and goes to 0 for the infinite system.
Because of the exponential tails of the localized wave
functions, a small degree of superfluidity remains in the
finite-size system. Equations (2) and (4) allow one to study
the depletion of the superfluid fraction for arbitrary disor-
der. The contribution of the disorder to the normal density
of polaritons can be represented as

 ndn � �1� fs�n: (6)

Figure 2 shows the superfluid fraction calculated as a
function of the polariton density in the system for T �
0 K. Because of the finiteness of the system considered the
superfluid fraction remains nonzero for any finite density,
but a very clear threshold behavior for densities corre-
sponding to the percolation threshold, as observed in
Fig. 1, can be seen. For high values of the chemical
potential, where V2

0=�g� 1, perturbation theory applies
and we obtain ndn � V2

0=4�g for the normal density [26],

which coincides with the twisted boundary conditions
approach for high polariton densities, as shown in Fig. 2.

We turn now to the calculation of the cavity polariton
phase diagram. Similar to previous works [9], we roughly
define a temperature and density domain where the strong
coupling is supposed to hold. The limits are shown in Fig. 3
as thick dotted lines: the edge temperature is assumed to be
equal to the exciton binding energy (�300 K) and the
maximum polariton density is taken 32 times larger than

 

FIG. 2 (color online). Superfluid fraction as a function of the
density of particles, obtained from twisted boundary conditions
(black curve) and from the perturbative approach [gray (red)
curve)].
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FIG. 3 (color online). Polariton phase diagram for a CdTe
microcavity containing 16 QWs. The horizontal and vertical
dashed lines show the limiting temperatures and densities where
the strong coupling holds. The lower solid line shows the critical
density for the transition from normal to Bose glass phase. The
upper solid line shows the critical density for the transition from
the Bose glass to the superfluid phase. The dashed part of the line
shows the temperature range where the validity of our approx-
imations ceases.
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the bleaching exciton density (1011 cm�2 in CdTe) in a
single quantum well. The transition from normal to Bose
glass phase can be calculated from Eq. (1) and a realistic
realization of disorder. The lower solid line in Fig. 3 shows
nc�T� for the same realization of disorder as for Fig. 1. The
free polariton dispersion is calculated using the geometry
of Ref. [6]. At T � 19 K we find nc � 2� 108 cm�2. This
value is smaller than the total density at threshold reported
in [6], which is of the order of 1011 cm�2. This indicates
that quasithermal equilibrium is experimentally achieved
only for large enough densities.

We now calculate the density for the transition between
the Bose glass and the superfluid phase. In the low tem-
perature domain, this density is approximately given by the
percolation threshold � � Ec and does not depend signifi-
cantly on temperature. This condition corresponds with
good accuracy to the abrupt change of the superfluid
fraction fs shown in Fig. 2. However, at higher temperature
the thermal depletion of the condensate becomes the domi-
nant effect. In that case the chemical potential of the
condensate is much higher than the percolation energy
Ec and the depletion induced by disorder can be neglected
compared to the thermal depletion of the superfluid. The
normal density then reads

 n0
n�T� � �

2

�2��2
Z
E�k�

@fB���k�; � � 0; T�
@�

dk; (7)

and the superfluid density in the system given by ns�T� �
n� n0

n�T� can be substituted into the Kosterlitz-Nelson
formula [27] to obtain a self-consistent equation for the
transition temperature:

 TKT �
@

2�ns�TKT�

2M
: (8)

The superfluid phase transition temperature TKT�n�, as
shown in Fig. 3, is determined from the solution of
Eq. (8). Below 120 K the critical density is given by the
percolation threshold and there is no temperature depen-
dence. Above 200 K the superfluid depletion is determined
solely by the thermal effects. In the intermediate regime
the crossover between the thermal and disorder contribu-
tions takes place and our approximations are no longer
justified. We also find that the superfluid transition takes
place very close to the weak to strong coupling threshold
and for densities 3 orders of magnitude larger than the one
of the Bose glass transition at 19 K.

In conclusion, we have established the phase diagram of
cavity polaritons taking into account the effect of structural
imperfections. We predict that with increasing density the
polariton system first enters the Bose glass phase before it
becomes superfluid. The Bose glass picture is in good
agreement with recent experimental data [6]. The conden-
sate wave functions as well as the spectra of elementary
excitations were obtained from the Gross-Pitaevskii equa-
tion including disorder. Our work also shows that disorder

has no significant impact on the occurrence of a transition
to the Bose-condensed phase for polaritons. This explains
why this phenomenon has been observed in a rather dis-
ordered system like CdTe. This also gives good hope for
the observation of such phase transition in even more
disordered systems like GaN [28]. However, since disorder
strongly affects the occurrence of the superfluid phase
transition, this could bring renewed interest in cleaner
systems like GaAs-based structures.
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