PRL 98, 205101 (2007)

PHYSICAL REVIEW LETTERS

week ending
18 MAY 2007

Mode Switching in a Gyrotron with Azimuthally Corrugated Resonator
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The operation of a gyrotron having a cylindrical resonator with an azimuthally corrugated wall is
analyzed. In such a device, wall corrugation cancels the degeneracy of the modes with azimuthally
standing patterns. The coupling between these modes depends on the radius of electron beam. It is shown
that such a gyrotron can be easily switched from one mode to another. When the switching is done with the
repetition frequency equal to the rotational frequency of magnetic islands, this sort of operation can be
used for suppression of neoclassical tearing modes in large-scale tokamaks and stellarators.
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High-power, millimeter-wave gyrotron oscillators and
amplifiers are presently used for numerous applications,
which include plasma heating [1] and radars [2]. Normally,
gyrotron oscillators operate in a single mode. Here we
consider a gyrotron with a resonator whose wall is azi-
muthally perturbed such that counter-rotating modes are
coupled together. In this situation, composite modes are
formed. The coupling between these modes depends on the
radius of the electron beam. It is shown below that at
certain beam positions, the gyrotron can be easily switched
from one mode to the other. This allows one to provide
rapid changes in gyrotron operation by using a low-power,
short-pulse driver.

In a conventional cylindrical (or coaxial) resonator, non-
symmetric (i.e., having a nonzero azimuthal index m,
exp[ *ime]) waves rotating azimuthally in opposite direc-
tions, as well as standing waves with azimuthal distribution
cosme or sinmg are degenerate. A beam of electrons
rotating in the applied magnetic field being a gyrotropic
medium breaks the degeneracy of rotating waves. Thus,
such a beam excites one of these waves, the one that is
more strongly coupled to the beam [3]. In turn, when the
resonator wall is azimuthally corrugated, as shown in
Fig. 1, and the number of these corrugations is twice the
azimuthal index m of the operating mode, the corrugation
provides the coupling between two rotating waves and,
hence, leads to formation of standing wave patterns.
Such cosine and sine modes have different frequencies.
Their frequency separation is 2A w, where [4]

Ao  d V2 + m?
w 2R, VP —m*

(D

In (1), d is the corrugation depth, R, is the unperturbed
radius, v is the eigennumber of the operating mode, and
wis the mode frequency in the absence of corrugations.
This situation is similar to the coupling between two waves
propagating in opposite directions in a dielectric medium
with spatially periodic modulations [5]. When both effects
(the effect of the electron beam and the effect of the wall
perturbation) are of the same order, normal modes repre-

0031-9007/07/98(20)/205101(4)

205101-1

PACS numbers: 84.40.1k, 52.59.Rz

sent superpositions of either rotating or standing waves.
The interaction between these modes and the possibility to
switch the gyrotron operation from one mode to another
are analyzed below. We consider the case when the fre-
quency separation 2A w is much smaller than the cyclotron
resonance band and, hence, both waves can operate with
the same efficiency.

Omitting the details of derivation, which are similar to
those described elsewhere [6,7], equations for the interac-
tion between the two rotating waves with complex ampli-
tudes A can be given in the quasilinear approximation as

dA+ w 1 2
—+—A.=—iAwA: + 0wl — I

X e iTmelaA — BAIAPHe,  (2)
where Q is the quality factor for the two modes, I is the

normalized beam current defined in [6], A(p) =
T (E)e™ =99 A+ T, (£)e"mT)9A_ represents the

FIG. 1. Cross-section of the interaction space in the gyrotron
with a thin annular electron beam and a resonator having an
azimuthally corrugated wall.
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local amplitude of the azimuthally dependent field compo-
nent that resonantly interacts with gyrating electrons. Here,
the coupling coefficients J,,+;(£) are ordinary Bessel func-
tions, s is the cyclotron resonance harmonic, and & =
wR,/c where R, is the beam radius. The complex coef-
ficients a and B describe the linear interaction of the beam
with the fields and the saturation, respectively. These
quantities give rise to a complex frequency shift of the
individual uncoupled modes, proportional to the beam
current, Sw. = iwlJy: (EaAs — BALJ4 - (HIALIP)
The real parts of @ and B determine the current re-
quired to start oscillations of the uncoupled modes,
I~ = 1/20Re(a)J?+,(£), and the saturated amplitude
of the uncoupled modes, |A.|> = Re(a)(1 — I ./I)/
Re(B)J2~,(£). The imaginary parts determine the beam
induced frequency shift. These coefficients depend on the
axial structure of modes and the detuning between the
cavity frequency and the s-th harmonic of the electron
cyclotron frequency [6].

The difference in electron interaction with the two rotat-
ing modes can be characterized by the ratio of the Bessel
functions, ¢ = J2,, (£)/J%_,(£). The dependence of this
ratio on the radius of a thin electron beam is illustrated by
Fig. 2. Here, Fig. 2(a) shows the dependence of functions
J2.(wR,/c) on the beam radius for the TE,,¢-mode
operating at the fundamental cyclotron resonance (this
mode is typical of those used in MW-level gyrotrons [8]).
Figure 2(b) shows corresponding dependence of the g ratio
on beam radius.

If one performs the average over angle ¢ in (2), one
obtains

dA. w
=+ — A, = —iAwA; + 0l); {a
di 20~ s
= BlnwA P + 2054 JAZPTHA .
3)

So, similar to a classical two-mode rf oscillator [9], there is
a strong cross-saturation effect (the term with the factor 2);
i.e., one rotating mode strongly suppresses another [6].

Equation (3) applies to the amplitudes of the two
counter-rotating waves. When the corrugations are present,
it is more appropriate to represent the field as a superpo-
sition of standing waves, A+ = A,(f)e "2 + A,(r)e'A",
Here, A, , are the complex amplitudes of standing waves,
which in the absence of the beam have frequency shifts
*+Aw (1) relative to the case of a smooth walled resonator.
Evolution equations for these amplitudes are then obtained
by taking the sum and difference of the two versions of (3)
and substituting for A .

We now focus on the case when the frequency shift A w
is large compared with the inverse cavity decay time
w/2Q. In this case, the phases of the two standing modes
vary rapidly in time compared with the variation of the
amplitudes; so we may average the equation for the stand-
ing mode amplitudes over a time period 27/Aw. The
result is
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FIG. 2. (a) Dependence of coefficients characterizing the cou-

pling of a thin annular electron beam to co- and counter-rotating
TE;, ¢-waves on the beam radius. (b) Dependence of the g ratio
(solid lines) and the parameter k characterizing the coupling
between modes (dashed line) on the beam radius for the
TEZZ‘G-mOdC.
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where ¢; = (g2 + ¢ %) /2, ¢c; = (g + ¢~ + 4)/2 and
c3s=q+q ',and J? = J, (€)],,_(&). The last term in
the right hand side represents the possible presence of
injected signals at the frequencies corresponding to the
two standing modes. We will consider the effect of injected
signals on the mode dynamics subsequently. Coefficients
¢, and c3 describe the self and cross-saturation terms.
When the cross saturation is smaller than the self-
saturation, the coupling between modes is weak, as in
gas lasers [10], and the device exhibits stable two-mode
oscillations, while otherwise the coupling is strong and
only single-mode oscillations are stable, as in a classical
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rf oscillator [9]. The condition for weak coupling ( ¢3 < ¢,)
is [4]

2-BB=g=2+3 (5)

In Fig. 2(b), the dependence of the g ratio on the beam
radius is shown for the gyrotron operating in the
TEj, ¢-mode. Also shown, by a dashed line, is the ratio k =
c3/c; =2(qg+q ")/(g+ 4+ q ). Strong coupling cor-
responds to k > 1. For conventional gyrotrons, this ratio of
corresponding cross-saturation terms to self-saturation
ones, which is different from those in [4], is equal to 2.
As it follows from Fig. 2(b), the most convenient way to
control the value of k is to position the beam in the near-
caustic region (R, = (0.46 — 0.48)R,,) where the radial
dependence of Bessel functions is rather smooth. Then
the operating characteristics can be modified if k is chosen
to be close to the boundary between weak and strong
coupling. For instance, a gyrotron can be easily switched
to operation from one mode to another in this regime using
an injected signal, as shown below. As follows from
Ref. [11], the gyrotron efficiency in this case is equal to
3/4 of the efficiency of a conventional gyrotron.

To reduce the number of parameters, Eqs. (4) can be
rewritten as

dAl,Z
dr

In (6), we introduced the slowly variable time 7 =
o(wt/2Q), which is normalized to the increment o =

(1/1;) — 1, the mode amplitudes A, = \/EAI,Z are nor-

malized to the saturation coefficient B =(0/0)X
(J%/2)?Re(B)c,, and the normalized amplitude of the drive

signal is Ay, = \/EZQS/ o). The coefficients « and S are
both taken to be real.

Numerical results from (6) are shown in Fig. 3. Here, we
have set the source for mode 1 to zero and the source for
mode 2 to be a real quantity implying that the frequency of
the source coincides with the frequency of mode 2.
Figure 3(a) illustrates a typical time evolution of both
amplitudes. It shows initial operation of a gyrotron at the
first mode in the absence of a driver. When the driver is
turned on, the switching process starts. This process results
in the switching to the second mode, which remains stable
after turning the driver off. For a 110-170 GHz gyrotron
having the resonator with the quality factor of 103, this
normalized switching time corresponds to the time interval
less than 100 ns. When the drive amplitude exceeds its
critical value only slightly, the switching may take a longer
time.

Figure 3(b) shows the critical value of the drive ampli-
tude required for switching the oscillator from the first
mode to the second as the function of the parameter k.
As expected, the critical value of the drive amplitude
required for switching the device increases with the depar-
ture from the boundary (k = 1) between the weak (k < 1)

=A{l — A2, — kA3 } + Ag1n. (6)
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FIG. 3. (a) Typical evolution of mode amplitudes in the pro-

cess of switching from the first mode to the second; (b) critical
switching amplitude of the drive signal as the function of the
parameter k characterizing the excess of the cross-saturation
over the self-saturation.

and strong (k > 1) coupling. To interpret the value of the
normalized amplitude of the drive signal required for
switching, one should analyze the normalization of this
amplitude given after (6) and take into account that the
original drive term Sy, in (4) relates to the power of a driver
as [12] (20S)? = 41Q(Q/ Qup)(Par/ Py 1 ). Here, Oy is the
coupling Q factor, P, is the beam power associated with
electron gyration. As follows from these relations, the
drive power required for switching the gyrotron is propor-
tional to the squared switching amplitude shown in
Fig. 3(b) and to the power of gyrotron radiation. The latter
fact agrees with the Adler’s conclusion [13] that the drive
power required for phase locking of an oscillator is pro-
portional to the power of oscillations. As shown in
Fig. 3(b), the critical value of the drive amplitude increases
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linearly as (k — 1) grows. This means that the drive power
required for switching in the gyrotron with an azimuthally
corrugated resonator can be (k — 1)? times smaller than in
conventional gyrotrons where k = 2.

To estimate the drive power with the use of Fig. 3(b), we
took a set of typical parameters for a 1 MW gyrotron:
90 kV, 40 A electron beam with the orbital-to-axial veloc-
ity ratio of 1.3, TE,, ¢-mode, total Q factor of 1600, ratio of
the cavity length to the wavelength equal to 6. We also
assumed that the axial distribution of the rf field in the
resonator is constant, the driver is critically coupled to the
cavity, the beam location corresponds to the maximum of
beam coupling to the desired mode and the g ratio is equal
to 0.2 that is close to the boundary between strong and
weak coupling given in (5) by 2 — /3. Then, the drive
power remains dependent on the linear growth rate « and
the saturation term 3, which can vary with the magnetic
field when the beam parameters are fixed. If we assume
B = 1, then we find that for switching a conventional
gyrotron from one mode to another, it is necessary to apply
60 kW drive power, while in the case of the gyrotron with
azimuthally corrugated resonator and k = 1.1, it is enough
to use about 1 kW only. Note that in the case of using
additional resonator for electron prebunching (as in gyro-
klystrons), the required drive power can be much lower.

In recent years, there is a strong interest in using gyro-
trons for suppression of neoclassical tearing modes
(NTMs) [14]. For the most efficient use of gyrotrons for
this purpose in large tokamaks and stellarators (such as
ITER or W7-X), it is desirable to have gyrotrons operating
in a modulated regime with the modulation frequency
corresponding to the rotational frequency of magnetic
islands (a so-called AC method of NTM stabilization
[15]). To realize such low-frequency modulation of gyro-
tron radiation (rotational frequency of magnetic islands is
on the order of 10 kHz), it was proposed [16] to use a
gyrotron operating in a single mode with a periodic modu-
lation of either the mod-anode voltage (in the case of
triode-type electron guns) or the resonator voltage (in the
case of gyrotrons using diode type guns and depressed
collectors). Such a gyrotron should be supplemented by a
narrow-band frequency diplexer capable of directing the
gyrotron wave beam to one of two output channels [16]. To
keep the gyrotron single-mode efficiency high, it is neces-
sary to modulate the frequency in the scale much smaller
than the width of resonance curve of a given mode that
imposes some limitations on the design of a narrow-band
diplexer [16].

The use of a gyrotron with a resonator having an azi-
muthally corrugated wall offers a new possibility for this
application. Indeed, the corrugation depth can be adjusted
for the frequency separation between two standing modes
to be large enough for reliable operation of the frequency
diplexer [16]. Then, when the beam position corresponds
to the ¢ ratio slightly outside the boundaries of weak
coupling region (5), the coupling between two modes is

still strong, but the device can be switched from operation
in one mode to another with the use of a low-power driver.
To switch the device back to the first mode, the next pulse
of a driver should excite the first mode.

The results obtained demonstrate that gyrotrons with
azimuthally corrugated walls controlled by a two-
frequency, short-pulse driver operating with the repetition
frequency equal to the rotational frequency of magnetic
islands can be used for the AC suppression of NTM modes
in conjunction with the frequency diplexer [16].
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