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Lower branch coherent states in plane Couette flow have an asymptotic structure that consists of O�1�
streaks, O�R�1� streamwise rolls and a weak sinusoidal wave that develops a critical layer, for large
Reynolds number R. Higher harmonics become negligible. These unstable lower branch states appear to
have a single unstable eigenvalue at all Reynolds numbers. These results suggest that lower branch
coherent states control transition to turbulence and that they may be promising targets for new turbulence
prevention strategies.
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Recent experiments indicate that the smallest amplitude
necessary to trigger transition to turbulence in pipe flow
scales with the inverse of the Reynolds number R, at least
for a class of large scale perturbations [1,2]. That R�1

scaling, and other characteristics of the perturbations, are
shown here to be consistent with a class of unstable 3D
traveling wave solutions of the Navier-Stokes equation
recently discovered in all canonical shear flows [3–8].
These new coherent solutions arise through saddle-node
bifurcations at R � Rsn. At that onset Reynolds number,
the solutions capture the form and length scales of the
coherent structures that have long been observed in the
near wall region of turbulent shear flows [6]. For R> Rsn,
the solutions separate into upper and lower branches. For
relatively low R> Rsn, a single traveling wave upper
branch may capture the key statistics of turbulent shear
flows remarkably well [6,9,10]. Here it is shown that the
lower branch solutions in plane Couette flow obey the R�1

scaling and evidence is provided that these states form the
‘‘backbone’’ of a phase space boundary separating the
basin of attraction of the laminar flow from that of the
turbulent flow, and are therefore directly connected with
transition to turbulence [5,6,11].

Incompressible fluid flow is governed by the Navier-
Stokes equations

 @tv� v � rv� rp � R�1r2v; r � v � 0; (1)

where v�r; t� is the fluid velocity at point r and time t � 0,
p�r; t� is the mechanical pressure that enforces incompres-
sibility and R> 0 is the Reynolds number which is a non-
dimensionalized inverse viscosity. The mean flow is in the
ex direction in a channel with parallel walls at y � �1.
Plane Couette flow (PCF) is driven by the motion of these
walls so v � �ex at y � �1, for all x, z, t, in which case
v � yex is the laminar solution of (1). That solution is
linearly stable for all R> 0 [12], but experiments suggest
that sustained turbulence exists for R * 325 [13]. Periodic
boundary conditions are imposed in the wall-parallel di-
rections x and z with fundamental wave numbers � and �,

respectively. Further technical information can be found
in [6].

For traveling wave solutions, the velocity field is Fourier
decomposed in the x direction as

 v �r; t� � v0�y; z� �
�X1
n�1

ein�vn�y; z� � c:c:
�

(2)

where � � ��x� ct�, c is the constant wave velocity and
c.c. denotes complex conjugate. The 0-mode v0�y; z� �
�u0; v0; w0� consists of streamwise rolls (0, v0, w0) with
@yv0 � @zw0 � 0 kinematically decoupled from the
streamwise component u0. The latter consists of an x and
z averaged mean flow �u�y� and streaks u0�y; z� � �u�y�.

Symmetric lower branch traveling waves in plane
Couette flow (for which c � 0) have been continued to
high R by Newton’s method as in [3,4,6]. Figure 1 shows
the scaling of the amplitudes of the various elements con-
stituting such solutions as functions of R. The streaks
u0�y; z� � �u�y� tend to a nonzero constant while the am-
plitude of the rolls �0; v0�y; z�; w0�y; z�� scales like R�1 as
R! 1. The fundamental mode v1�y; z� has an approxi-
mate R�0:9 scaling, while the 2nd and 3rd harmonics scale
approximately like R�1:6 and R�2:2, respectively. Higher
harmonics decay faster and are not shown. This separation
between the harmonics suggests that the 2nd and higher
harmonics become insignificant for large R. Indeed, the
solution was continued beyond R � 6168 by dropping all
harmonics with no significant change. This asymptotic
structure confirms, and is understood by, the asymptotic
form of the self-sustaining process [11,14]. That process
consists of R�1 streamwise rolls (0, v0, w0) redistributing
the streamwise velocity u to create O�1� streaks u0�y; z� �
�u�y� whose inflectional instability leads to an ei�v1�y; z�
wave whose nonlinear self-interaction feeds back on the
streamwise rolls, leading to the existence of invariant states
and departure from the laminar flow. That mechanistic
theory is directly tied to the methods used to compute
coherent states in all canonical shear flows [3,4,6–8].
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Figure 2 illustrates the structure of the lower branch
steady state. The streaky flow u0�y; z� and the rolls (0,
v0, w0) remain large scale and their structure becomes
independent of R; v0 has a simple updraft at z � 0 and
downdraft at z � ��=� that sustain the z modulation of
u0�y; z� (recall that u0 � �1 at y � �1 in PCF). But the
fundamental mode v1 concentrates about the critical layer
u0�y; z� � c (c � 0 for these states in PCF). Critical layers
are well known in the context of the 2D, linear theory of
shear flows [15]. Here the critical layer is a surface in 3D
space and it is nonlinearly coupled to the 0-mode v0�y; z�.
When the higher harmonics become negligible and jv0j,
jw0j 	 ju0j, the equation for the fundamental mode sim-
plifies to [11,14,16]
 


i��u0�c�v1��v1 �ru0�ex�ei���r�p1e
i��

�R�1r2�v1e
i��; (3)

with r � �v1e
i�� � 0. For high R, the solutions develop an

R�1=3 critical layer in the neighborhood of u0�y; z� � c �
0 that results from the balance between ��u0 � c� �
��r� rc� � ru0 �O�jr� rcj

2� and R�1r2, so if � is the
critical layer thickness, we must have ��jru0j � R

�1��2

and �� ��jru0jR��1=3 near u0�y; z� � c � 0. Figure 3
confirms that critical layer scaling for the lower branch
steady state in PCF.

The nonlinear coupling between the fundamental v1,
with its critical layer structure, and the rolls (v0, w0)
provides a challenge for the development of a full asymp-
totic theory of the lower branch states that would be able to
predict the amplitude scaling of the fundamental mode. If
v1 remained a large scale structure, its amplitude would
have to scale like R�1 in order for its nonlinear self-

interaction to balance the viscous diffusion of the R�1

streamwise rolls v0 [11,14]. The development of a critical
layer scale complicates the analysis and different norms
and components have different scalings. Nonetheless, an
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FIG. 2 (color online). Contours of v0�y; z� (solid, top) and
jv1�y; z�j (solid, bottom) both with contours of u0�y; z� �

�2:2�=3 (dashed) for ��; �; R� � �1; 2; 50 171�. The critical
layer u0�y; z� � 0 is shown as a bold solid curve in both plots.
Top (bottom) wall at y � 1 (�1) moves into (out of) the page so
no-slip boundary conditions impose u0��1; z� � �1 and
v0��1; z� � 0.
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FIG. 3 (color online). Contours of jv1j for ��; �� � �1; 2� at
R � 50 171 (solid) and 12 637 (dashed) stretched by R1=3 factors
along curves normal to u0 contours to match jv1j contours at
R � 3079 (dash-dot line). The (almost overlapping) black and
yellow solid curves show u0�y; z� � 0 at the 3 R’s.
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FIG. 1 (color online). Amplitude of x-Fourier modes for a 3D
steady state in plane Couette flow vs R for ��; �� � �1; 2�. Top to
bottom: O�1� streak u0�y; z� � �u�y�, O�R�0:9� fundamental mode
jw1j, O�R�1� streamwise rolls (v0, w0) and o�R�1� jv2j and jv3j.
Continued beyond R � 6168 by dropping all harmonics. Rsn 

164 is the turning point where lower and upper branch solutions
coalesce.
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asymptotic theory appears feasible and the present numeri-
cal data is clear and its implications are significant: the
lower branch states tend to a relatively simple but non-
trivial quasi-2D singular asymptotic state as R! 1 that is
not a solution of the Euler equation [Eq. (1) with R�1 � 0],
and that is not the laminar flow v � yex either. So the
lower branch states do not bifurcate from the laminar flow,
not even at R � 1. The data presented is for ��; �� �
�1; 2�, however, identical features hold for other (�, �)
values.

Turning now to a stability analysis of the lower branch
coherent states we find that these states are distinguished
not only by their asymptotic structure but also by their
stability characteristics. Our eigenmode analysis of the 3D
lower branch steady state in plane Couette flow, up to R �
12 000, show that they have a single, real unstable eigen-
value shown in Fig. 4 for ��; �� � �1:14; 2:5�. This state is
most unstable at R 
 342 then the unstable eigenvalue
steadily decreases approximately as R�0:48 for larger R.
Furthermore, the corresponding eigenfunction is in the
same shift-reflect and shift-rotate symmetries [[6],
Eqs. (24), (26)] as the lower branch state. This is not true
for the upper branch states which develop new bifurcations
and unstable modes as R increases.

These stability results were obtained using both a direct
calculation of the eigenvalues of the full Jacobian in the
doubly symmetric subspace of the lower branch state with
an ellipsoidal truncation of the Fourier-Chebyshev repre-
sentation [6], and an iterative calculation in the full space
using the Arnoldi algorithm and the CHANNELFLOW code
with cubic truncation [17]. The leading unstable and least
stable eigenvalues matched to 5 or 6 significant digits. We
have also investigated subharmonic instabilities through
numerical simulations in a double-sized box with funda-
mental wavenumbers �=2 and �=2. For R � 1000 and
��;�� � �1:14; 2:5�, the fundamental instability shown in
Fig. 4 has growth rate 0.036 81, we also found a weak
instability subharmonic in x with growth rate 0:005 248�
i0:022 45. The analysis of this subharmonic mode is left for
future study.

Thus, in the one-period domain with fundamental wave
numbers (�, �), the lower branch state is an unstable
equilibrium with a 1D unstable manifold. Therefore its
stable manifold splits the phase space into two parts, at
least locally. The evolution of disturbances in the one-

period domain, starting on the 1D unstable manifold of
the lower branch on either side of the stable manifold is
illustrated in Fig. 5. These numerical simulations were
performed using CHANNELFLOW in the full phase space
and show the time evolutions in the energy input-energy
dissipation plane, both normalized by their laminar values.
For plane Couette flow, the normalized energy input rate is
equal to the normalized drag, that is, the drag at the walls
normalized by their laminar value. Perturbations starting
on one side of the stable manifold gently decay back to the
linearly stable laminar flow v � yex while perturbations
on the other side of the stable manifold shoot to a turbulent
state. Figure 5 also shows the upper branch brother of the
lower branch state which, as stated earlier, is located in
phase space much closer to the ‘‘turbulent’’ state. The de-
cay of perturbed lower branch states back to the laminar
flow follows a standard two-step evolution. First, the fun-
damental mode v1, with its critical layer structure, disap-
pears and the flow relaxes to an x-independent state that
consists of streamwise rolls (0, v0, w0) and streaks u0�y; z�
and slowly decays back to the laminar flow on a long
viscous time scale. Perturbations that shoot to a turbulent
state follow a much more rapid ‘‘breakdown’’ (as indicated
by the �t � 5 dot spacing in Fig. 5) with high dissipation
rate (about 13 on Fig. 5) then settle to a turbulent state with
energy input and dissipation rates of about 4.4 [for
��; �; R� � �1; 2; 1000�].

These results show that the lower branch stable manifold
is a piece of the boundary separating the basin of attraction
of the laminar state from that of the turbulent state. Our
results have focused on symmetric steady states in plane
Couette flow but there is evidence of a similar role for
lower branch traveling waves in plane Poiseuille flow [5]
and pipe flow [18]. Recent work by Viswanath [19] com-
plements our work by showing that perturbations of the
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FIG. 4 (color online). The single unstable eigenvalue of the
lower branch state ��; �� � �1:14; 2:5� as function of R.
Asympotic scaling is 
 O�R�0:48�. There is an extra complex
conjugate pair near the onset Rsn 
 218.
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FIG. 5 (color online). Energy input/dissipation rate starting
near the lower branch fixed point ��; �; R� � �1; 2; 1000� on its
unstable manifold. In one direction, the flow goes to turbulence
while in the other direction it relaminarizes. The dot spacing is
4t � 5. The blue marker at (1,1) is the laminar flow, green
marker at (1.35,1.35) is the lower branch state and the red marker
at (3.89,3.89) is its upper branch brother.
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laminar flow in the form of streamwise rolls of the right
threshold amplitude� small 3D noise do get attracted to a
lower branch state before shooting to turbulence. We ex-
pect the symmetric lower branch state to play a key role for
transition in plane Couette flow but there exist other asym-
metric lower branch traveling wave states as well as peri-
odic orbits [19–21], each of which may play a similar
‘‘transition-backbone’’ role, locally in phase space. We
conjecture that the invariant states (steady states, traveling
waves, and periodic orbits) most relevant to transition to
turbulence will contain R�1 streamwise rolls. It may be
possible to trigger transition with smaller disturbances but
we suspect that such disturbances would lead to the for-
mation of an R�1 updraft (as in Fig. 2, top) which in turn
would create O�1� streaks and an approach toward a lower
branch state with R�1 rolls and O�1� streaks thanks to the
sustenance of the rolls from the nonlinear interaction of the
streak wave ei�v1�y; z�, prior to transition along the un-
stable manifold of the lower branch state. This scenario is
consistent with the experiments [1] where transition is
triggered by a jet from the wall of amplitude R�1 and of
sufficient duration, as well as with the simulations in [19].

The extreme low dimensionality of the lower branch
unstable manifold suggests a new approach to turbulence
control. Turbulence control strategies roughly fall into 2
categories: either prevent nonlinear breakdown of the lin-
early stable laminar flow, or push the fully nonlinear tur-
bulent flow back to laminar. A new strategy might be to put
the flow on a lower branch equilibria and keep it there by
controlling its very few unstable modes. There would be a
small drag penalty to do so since lower branch states have a
net drag that is 30% to 40% higher than the laminar state as
R! 1 but that would still correspond to a near 100% drag
reduction, as R! 1, when compared to the turbulent
state. This control strategy is related to, but quite distinct
from the strategies proposed in [22,23]. Streaks are used in
[23] to efficiently deform the laminar base flow in order to
prevent the linear instability of boundary layer flow. In [22]
strategies are considered to push the turbulent flow onto the
laminar side of the stable manifold of a lower branch
unstable periodic solution in order to relaminarize the
flow. The current proposal is to put the flow on the unstable
lower branch equilibrium and keep it there by controlling
its few unstable eigenmodes.

The data discussed in this Letter as well as movies
illustrating the return to laminar and the turbulent break-
down displayed in Fig. 5 are posted at [24].
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