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We investigate the dynamics of a system of coupled electron billiards by using a magnetic field to
dramatically modify the underlying mixed phase space. At specific values of the magnetic field the sea of
chaos is drained. At these fields there exist reflected or transmitted orbits associated with maxima and
minima in the experimentally observed magnetoresistance. These effects are studied by comparing the
classical and quantum-mechanical phase-space dynamics leading to a basic understanding of the role of
chaos in the transport in an array of billiards.
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The manner in which the quantum states of a system
evolve into their classical counterparts has been of interest
since the advent of quantum theory [1] and has led to the
development of the field of quantum chaos [2,3]. A special
place in this field is occupied by the control of chaos [4], by
exploiting the specific features of the phase space. While
dynamical systems may be purely chaotic or regular, the
most ubiquitous in nature are those whose phase space is
instead mixed [5]. A theory describing a system under
nonlinear perturbation is based on the Kolmogorov-
Arnold-Moser (KAM) theorem [6]. It states that for small
and smooth perturbation and quasiperiodic motions there
exists an invariant torus in phase space [3,6]. Violating
either of these conditions may induce a change from a
KAM to a non-KAM system, with a drastic evolution in
the chaotic dynamics. In driven systems, non-KAM behav-
ior has been found under resonant driving conditions [7–
10].

The study of quantum chaos in open systems is impor-
tant, also, to the decoherence theory [11]. This connects the
properties of open quantum systems to the existence of a
set of pointer states, which remain robust in the presence of
the environmental coupling, eventually correlating with
regular classical orbits (the states within the KAM islands)
[11]. The evidence of such pointer states has been provided
in the studies of single open quantum dots [12–14]. How-
ever, there remain important questions about the one-to-
one connection between the classical and quantum descrip-
tions in this problem and its relation to an experimentally
observed quantity—the magnetoresistance (MR).

In a classically regular system with 2 degrees of free-
dom, the periodic and quasiperiodic orbits lie on two-
dimensional (2D) invariant tori, constructed from appro-

priate action-angle variables [15]. If some of these tori are
destroyed by a perturbation, chaos will be caused, resulting
in a mixed phase space. The action-angle variables of such
a system can be associated with two hybrid frequencies
(!� and !�, see further below). When these frequencies
are irrational multiples of one another, a trajectory follows
a quasiperiodic KAM orbit [15], without ever repeating
itself. Its torus is therefore filled densely by each of its
trajectories individually [6]. When !�=!� is an integer,
the trajectories will repeat themselves and periodic orbits
are obtained. In such nondriven systems, like the billiards
investigated here, ‘‘resonance’’ is defined by this condition
[2]. Now, the torus is not densely filled by an individual tra-
jectory and in this sense we speak of a non-KAM system.

In this Letter, we show a magnetic field (B) may be used
to drive a sequence of transitions between KAM and non-
KAM dynamics in an experimentally realizable system, an
array of coupled electron billiards (an open quantum-dot
array). These systems are defined in a two-dimensional
electron gas (2DEG), resulting in 2 degrees of freedom of
electron motion. We show the hybrid frequencies of this
system may be tuned by a magnetic field, giving features in
the low-temperature MR that are directly related to the
transitions between KAM and non-KAM dynamics.

The split-gate quantum-dot arrays we study are realized
in the 2DEG of a GaAs=AlGaAs heterostructure. Their MR
has been measured at cryostat temperatures of 10 mK. The
2DEG areal density, mobility, and mean free path � are
2:38� 1015 m�2, 124 m2=V s, and 10 �m, respectively
[16]. � is much larger than the dot size (�0:4 �m). The
actual dot size differs from the lithographic size [Fig. 1(a)]
due to fringing fields. From these parameters we also
compute a Fermi energy (EF) of 8.5 meV and a Fermi ve-
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locity (vF) of 2:1� 105 m=s. In Ref. [16], the 7-dot array
of Fig. 1(a) was studied and, as we show in Fig. 1(a), its
MR was found to exhibit a large pair of peaks near�0:2 T,
with subsidiary peaks near �0:5 and �0:7 T. As we make
clear here, these peaks result from magnetically-driven
transitions from a KAM to a non-KAM system.

In numerical modeling of the experiments, a close fit to
the MR extrema is only obtained by using a soft, as
opposed to a hard-wall, potential. Within the dot this takes
the form V�x; y� � 1

2m
	�!2

x;dx
2 �!2

yy2� as shown for the
single dot [17], while to model the constriction between
two dots we use the saddle form V�x; y� � 1

2m
	��!2

x;cx2 �

!2
yy

2� � Ec. m	 is the effective mass of the electrons and
Ec is the saddle-point energy. The

anisotropy (elliptic shape) of the dots is taken into account
by different values of the confinement parameters !y and
!x;d, with the potential having been adjusted to match what
one obtains from fully self-consistent calculations [18].
Further details are described in Ref. [19]. The classical
equation of motion for such an array is then solved by
assuming ballistic transport, which is justified by the long
mean free path of the 2DEG. In the presence of the
magnetic field, the motion in the dot regions is harmonic
with two hybrid frequencies [20]
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where !c is the cyclotron frequency eB=m	.
In the constrictions the motion is given by the superpo-

sition of a harmonic elliptic motion with frequency �� and
a nonperiodic motion along a hyperbola [where both x�t�
and y�t� have cosh���t� and sinh���t� components]
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Trajectories are calculated on the Fermi surface by choos-
ing starting angles and positions within the constriction or
one of the dots. The presence of the constriction causes
chaotic behavior which is modified by the magnetic field.
To define a trajectory as either regular (periodic and qua-
siperiodic) or chaotic, the long-time behavior of the system
must be studied. This is done by closing the array at its
ends and studying the behavior for times as long as 10�6 s,
several orders of magnitude longer than 1=!�. We deter-
mine that the peaks at �0:24, �0:54, and �0:70 T in
Fig. 1(a) correspond, respectively, to trajectories with 2,
4, and 6 bounces at the ‘‘wall’’ of a dot. These field values
can be expressed as even integer ratios of !�=!� [arrows
in Fig. 1(a)]. Examples of the trajectories at these values,
and the corresponding quantum probabilities, are shown in
Fig. 1(b) (discussed below). The quantum calculation uses
the same potential, with the transport computed by a
recursive scattering matrix formulation based on the
Lippman-Schwinger equation [21] and the conductance
found from the Landauer equation [22].

To investigate states of the trajectories in the phase space
[velocity (vx, vy), position (x, y)], Poincaré sections (PS)
are computed at the center line of the dot array [y � 0, axes
defined in Fig. 1(a)]. For a comparison of the classical
phase-space dynamics with a quantum-mechanical (QM)
analog, the Husimi distribution (HD) [15,23] is introduced.
The electron wave function  �x; y� is smoothed and trans-
formed via a coherent state ’ [15,23] centered at (x, y)

 ’�x; kx; y; ky; x0; y0� �
�

1

��2

�
1=4

exp
�
�
�x� x0�2 � �y� y0�2

2�2 � ikx�x0 � x� � iky�y0 � y�
�

(3)

 

FIG. 1 (color online). (a) Measured MR for the 7-dot array
(T � 10 mK). Arrows: positions of the resonant maxima and
minima expressed by the values of !�=!�. Inset shows a
micrograph of the 7-dot array. (b) Upper row: classically calcu-
lated trajectories for certain initial conditions in the entrance
constriction. Lower row: QM density probabilities (yellow: high-
est, black: lowest probability). According to the actual dot shape
we chose !x;d � 1:06� 1012 s�1, !y � 0:85� 1012 s�1,
!x;c � 2:16� 1012 s�1; extension in x direction: 0:32 �m
(dot region), 0:076 �m (constriction region).
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and, from this, the HD corresponding to a phase-space
probability is created as

 H�x; y; kx; ky� �
��������
Z
dx0dy0 �x0; y0�’�x; kx; y; ky; x

0; y0�
��������

2

(4)

kx � m	vx=@, ky � m	vy=@. For comparison with the
classical PS we project the cross section at y � 0 on top
of the (x, vx) plane

 HP�x; vx� �
Z
dkyH�x; y � 0; kx; ky�: (5)

Figure 2(a)–2(c) shows the PS-HP representations for
different values of !�=!� for vy > 0. At !�=!� �
1:6269 (B � 0:16 T, low-field flank of the strongest MR
peak), the PS in Fig. 2(a) consists of a large chaotic sea and
two different types of periodically-arranged KAM islands,
centered at vx � 0 and marked as (1) and (2). Fig-
ure 3(a) shows a magnification from the two KAM islands
presented in the PS-HP representation of Fig. 2(a). At vx �
0, the trajectories [Fig. 3(b), left] marked (1) and (2) cor-
respond to the pure !� [(1)] or the pure !� mode [(2)].
These orbits [Fig. 3(b), right] presumably correspond to the
pointer states. The invariant curves around the center of a
KAM island correspond to mixtures of the two modes.
Each KAM island is surrounded by a ‘‘sticky’’ layer
[7,10] emerging from trajectories that oscillate between a
given dot and one of its constrictions for a long time before
entering the sea of chaos. All trajectories with initial con-
ditions in the sea of chaos are unstable and finally escape
the dot array. The phase-space probability is distributed
over the periodically arranged type-2 KAM islands and the
neighboring chaotic regions. This is considered as evi-
dence for phase-space tunneling involving the classically
inaccessible KAM islands. An estimate of its contribution
through the pointer states (corresponding to the orbits
within a KAM island) can be obtained by using projection
to decompose the wave function of the open dot array, dot
by dot, in terms of eigenstates of the corresponding closed
single dot [12,18]. For !�=!� � 1:6269, we find that the
pointer state makes the dominant contribution, 46% when
averaged over the array, much larger than any other indi-
vidual state.

At !�=!� � 2:0000 (B � 0:24 T) the classical phase
space in the PS-HP representation is characterized by large
regular regions with periodic and backscattered orbits em-
bedded in a sea of chaos [Fig. 2(b)]. At this integer ratio,
the regular regions are particularly large since the back-
scattered orbits exist and many stable periodic orbits fit into
the dot region without penetrating the neighboring con-
strictions. Much of the sea of chaos has therefore been
‘‘drained’’ at this resonant condition. Since no quasiperi-
odic orbits exist, the system is non-KAM-like, but a slight
deviation from resonance will restore the KAM-like be-
havior. As this occurs, the periodic orbits will have become

quasiperiodic, resembling the closed periodic orbits but
rotating at a rate �! � j"j! where !�=!� � n� ",
"� 1. In addition, the orbit curvature changes with mag-
netic field, causing a large number of orbits to penetrate the
constrictions and leading to chaotic behavior [Figs. 2(a)
and 3(a)]. The phase-space probability at !�=!� �
2:0000 is concentrated in the first dot with the highest
density where classically backscattered trajectory cause
points in the PS (e.g., red triangle). Because of the soft
potential, the backscattered trajectory is strongly insensi-
tive to its starting conditions, reflecting its high stability in
phase space and causing the large resistance peak which is

 

FIG. 2 (color). PS-HP representations for different ratios of
!�=!�: white dots represent the PS, color plots the HP (red:
high, blue: low QM phase-space probability). (a) !�=!� �
1:6269. The PS shows two types of KAM islands symbolized by
(1) and (2) and a ‘‘sticky layer’’ (light gray) around them. The
type-2 KAM islands in each dot have highest phase-space
probability. (b) !�=!� � 2:0000. The large white dots, in the
regions where the chaotic sea has been drained, correspond to
different periodic orbits. The red triangle (first dot, highest
probability) represents a backscattered orbit [same initial condi-
tion as in Fig. 1(b) at !�=!� � 2:0000]. (c) !�=!� � 3:0000.
Large white dots: as in (b). The phase-space probability (for
vy > 0) is concentrated at the left transition between dot and
constriction (symmetric with respect to the middle of the con-
striction if vy < 0 data are included). The red rectangle indicates
the size of @, i.e., the QM uncertainty. (d) Probability density for
!�=!� � 3:0000 (red: highest, blue: lowest probability).
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qualitatively repeated (but attenuated) at 0.54 T
(!�=!� � 4) and 0.70 T (!�=!� � 6). A comparison
of the classical orbits with their QM counterparts is shown
in Fig. 1(b) for the three peaks of Fig. 1(a).

MR minima are found to be related to odd integer values
of !�=!�. At B � 0:43 T, !�=!� � 3, skipping orbits
form that are commensurate with the periodicity of the
array [Fig. 2(d)]. These orbits enhance the transmission
and dominate transport. Also at this resonance, the sea of
chaos has been drained and the phase-space probability is
now concentrated at the constrictions [Fig. 2(c)]. The
corresponding probability density, which closely matches
the skipping orbits, is shown in Fig. 2(d).

At noninteger but rational ratios such as 4=3 or 3=2, no
significant structure is seen in the experimental MR. For
these ratios, the classical phase space shows negligible
draining of the sea of chaos and the QM calculations
show little or no structure in the MR.

We may summarize these results in terms of the control
of transport resulting from the influence of the magnetic
field on the mixed phase space. The ratios !�=!�, which
characterize the dynamics of a mixed phase space, are
found to be essential also for the transport in the electron
billiards. The MR maxima and minima indicate the for-
mation of a non-KAM system, with even and odd ratios,
respectively, of the characteristic frequencies. The corre-
sponding PS are characterized by a mixed phase space with
a reduced chaotic sea. Transmitted skipping orbits deter-

mine the transport for odd ratios of these frequencies,
while for even ratios backscattered orbits are dominant.
In the flanks of the MR peaks, in contrast, a mixed phase
space consisting of large chaotic regions and KAM islands
dominates. The orbits within the KAM islands that do not
penetrate the constrictions presumably are connected to the
pointer states, while the backscattered orbits and the trans-
mitted skipping orbits arise from hybridization between the
dot states and the environment states. All of this contrib-
utes to a fundamental understanding of the complicated
landscape of interactions in open electron billiards.
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FIG. 3 (color online). Phase space of the 7-dot array for
!�=!� � 1:6269 (B � 0:16 T). (a) Magnification of the two
types of KAM islands in a two-dimensional (vx;x) PS symbol-
ized by (1) and (2) and a ‘‘sticky layer’’ (light gray) around them.
vF � 2:1� 105 m=s. (b) Left panel: trajectories at the center of
the two KAM islands attributed to the pure !� (1) and pure !�
(2) mode, showing two different circulations. Right panel:
probability current density (red: current flow to the right, blue:
current flow to the left).
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