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We solve self-consistently the coupled equations of motion for trapped particles and the field of a one-
dimensional optical lattice. Optomechanical coupling creates long-range interaction between the particles,
whose nature depends crucially on the relative power of the pump beams. For asymmetric pumping,
traveling density wavelike collective oscillations arise in the lattice, even in the overdamped limit. By
increasing the lattice size or pump asymmetry, these waves can destabilize the lattice.
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Optical lattices (OL) are periodic arrays of particles
trapped by the standing wave interference pattern of sev-
eral laser beams. They constitute important model systems
for solid state physics as well as for quantum information
science. The backaction of the trapped particles on the trap
light is carefully avoided in most OL experiments.
However, it is known to give rise to intriguing phenomena
in related systems, e.g., cavity cooling [1], mirror cooling
[2], and optical binding [3]. For OLs, this backaction has
been predicted [4] and observed [5,6] to reduce the lattice
constant compared to the naive expectation.

In this Letter, we consider the dynamical effects of
optical backaction in a one-dimensional OL, tuning a
hitherto neglected parameter, the asymmetry in the inten-
sities of the lattice beams. Because of the backaction, the
trap light mediates an interaction between the particles,
which is substantially altered by this asymmetry. Net en-
ergy and momentum flow is induced through the OL,
relating it to crystals driven far from equilibrium, e.g.,
arrays of vortices in a type-II superconductor [7], and trains
of water droplets dragged by oil [8]. The phononlike
traveling waves characteristic of these systems become
the elementary excitations of the OL as well and can
destabilize it, even in the presence of arbitrarily strong
viscous damping. They arise resonantly at specific values
of the asymmetry, which allows for tuning the dispersion
relation of the lattice. Moreover, the light-mediated inter-
action in the OL is of infinite range, and thus all these
effects depend heavily on the size of the lattice. As absorp-
tion inevitably leads to pumping asymmetry, this dynamic
instability limits the size of any OL.

We consider a dipole trap formed by two counter-
propagating phase locked laser beams with frequency w =
ck. The waist of the trap is much larger than the wavelength
A = 27/k, so the light field is essentially 1 dimensional
along x. The electric field incident from the left is E(x) =
Eye™~io! from the right, E(x) = Eje”*~ %! with E, =
ei‘l’\/?EO and ¢ the relative phase. Besides the pump
power ratio ° > 1, we use another measure of the asym-
metry: A = |E,/Ey| — |Ey/E;|. We consider particles of
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PACS numbers: 32.80.Lg, 42.65.5f, 63.22.4+m, 71.36.+c

linear polarizability « and mass m, precooled to very low
temperatures (possibly pretrapped) and trapped by the
dipole force in the light field. These can be atoms, the
lasers being detuned to the red of a specific transition so far
that spontaneous emission can be ignored. Alternatively,
they can be plastic beads trapped in water, as in, e.g.,
[9,10], of size well below A so that complications of Mie
scattering are avoided. If the particles are cold enough,
they gather at the antinodes, forming N disk-shaped clouds
of axial size much smaller than A. For simplicity, we
assume that each cloud has the same number of particles,
and thus identical surface density 7, surface mass density
m = mm,, and dimensionless polarizability ¢ =
kna/(2¢€,). The setup is sketched in Fig. 1.

We now take the backaction of the particles on the light
field into account. As in [4], we solve the scalar Helmholtz
equation, with the N clouds represented by Dirac-6 distri-
butions of linearly polarizable material,

N
(02 + k*)E(x) = —2kE(x) Z {8(x — x)). (1)
j=1

\
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FIG. 1 (color online). A dipole trap created by two lasers of
equal frequency but unequal power. The intensity mirrored for
better visibility ranges between Iy, = 3 €oc(|Eol — |E|)* and
Inax = 3 €oc(IEg| + |E,])%. Trapped particles form disk-shaped
clouds and are modeled as beam splitters. Because of the pump
asymmetry, the electric field has no nodes. Backaction of trapped
particles distorts the field and reduces the lattice constant.
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Throughout this Letter, we assume ¢ € R, neglecting
spontaneous emission and scattering into other transverse
modes, valid if the lasers are far detuned from any reso-
nance of the trapped particles. Note that although these
approximations can be relaxed by setting { € C, very
close to resonance, the reabsorption of spontaneously emit-
ted photons plays an important role in the dynamics [11],
and this is not easily incorporated into this model.

The solution of Eq. (1) between two clouds is a super-
position of plane waves, E(x;_; < x < x;) = A;ex%) +
Bje—ik(x—x‘/-) — Cj_leik(x—x‘/-_l) + Dj_le_ik(x_x»/‘l). The
clouds constitute boundary conditions for the field:

E(x =x; —0) = E(x = x; + 0); (2a)
0, E(x =x; —0) = 0,E(x = x; + 0) + 2k{E(x;).  (2b)

This amounts to representing each cloud as a beam splitter

(BS) at x = x; with reflection and transmission coefficients

r=il/(1 —i{)and r = 1/(1 — i{) [4].

Since E(x) is not differentiable at the cloud positions
(see Eq. (2b) and Fig. 1), we need to calculate the dipole
force on the cloud carefully. Integrating the force over a
finite cloud and then taking the Dirac-§ limit, we obtain

£ =0, B - 0+ 8,6+ 0] G

for the force on a unit surface of the cloud, averaged over
an optical period. This formula can also be derived based
on the amount of momentum transferred to the cloud by the
field, via the Maxwell stress tensor, as in [12].

For a single cloud at steady state, both F; =0 and
Egs. (2) must hold, which is only possible if

(A <2 @)

This simple equilibrium criterion can be intuitively under-
stood in the following way. If |E,|> < | E;|?, more photons
are incident on the right of the BS than the left, giving a
force on it. If enough light is transmitted (|7] > % |r| A) and
the interference is favorable (depending on the position of
the BS), the imbalance in the outgoing number of photons
is enough to counteract this force, leading to a steady state.

For N clouds trapped by the same light, at steady state,
F; has to vanish for j = 1, ..., N, which with Egs. (2) and
(3) implies that E(x) and |0, E(x)| are the same to the left
and right of any component. As a result, |E%(x)| = |E,|> +
|E,|? + 2| EyE, | cos[2kx — ®(x)] everywhere in the sam-
ple, the clouds only contribute to the phase: ®(x; <x <
Xj+1) = >y xi» the phase slip at the /-th cloud depending
on the polarizability {; of the cloud as

4- A - VAT +4

cosy,({, A) = %)

st 21+ 22
Thus, at steady state, [A,| =,..., = |Ay| = |C| =,..., =
|Cyl, and |B| =, ..., = |By| = IDi| =,..., = |Dyl; ie.,

the pump lasers fill the structure unattenuated.

Now consider the steady state of N > 1 identical, purely
dispersive trapped clouds, with ¢} =,...,={y =
{ <2/ A. Since at every cloud |C;/B;| — |B;/C;| = A,
the phase slips are all equal: y; =,..., = Yy = x. Thus,
the equilibrium configuration is an equidistant lattice, x; =
xﬁo) = x'% + (j — 1)d. The lattice constant d is clearly in-
dependent of N and a decreasing function of the phase shift

x—see Fig. 1 and the introduction of [4]—, explicitly

d=5-lm = (&, A) 6)
aa

For A = 0 this gives dgypmm = %(1—2 arctan(/) /) as in
[4]. For fixed ¢, increasing A causes the phase shift y to
increase and d to be reduced, as illustrated in Fig. 2 (thick
lines). For A >2//, the inequality (4) is violated; the
stronger beam pushes all the particles away. At A = 2/,
the lattice constant d is, remarkably, exactly half of dymy,:

din({) = ﬁ(ﬁ — 2arctan(). (7

The fact that an equilibrium lattice configuration exists
is only physically relevant if this equilibrium is dynami-
cally stable. The dynamics of an OL is given by

where in addition to the dipole force F; of Eq. (3), we
include viscous friction with coefficient w. For plastic
beads in water, u follows from the Stokes law; for atoms
in vacuum, it can represent some laser cooling mechanism.
This equation is nonlinear, as its solution involves integrat-
ing (1) to obtain the electric field for the force. We proceed
by linearizing Eq. (8) around an equilibrium configuration.

For ¢; = x; — K0« A, we have

J

N
mé; = —ué; + ZDjlflr &)
=

where the matrix D is defined by
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FIG. 2 (color online). The lattice constant as a function of the
asymmetry is shown in thick curves for { = 0.01, {/ = 0.1, { =
0.5, { = 1, { = 2. Shaded areas indicate regions of stability (see
page 4), for N = 800 (darkest shade), N = 100, N = 10 and
N = 2 (lightest shade). The white area is unstable, see Eq. (4).
The circle marks the parameter regime of Fig. 4.
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9
ﬂ:a_xle(gnzo,n=1...N). (10)

D
Stability analysis requires finding the eigenvectors of D
and determining their dynamics. Details of this calculation
are involved and will be published elsewhere. We outline
the procedure below. The key tool is the transfer matrix
(TM) method, as used in [4]. The TM of the whole optical
lattice is a product of the TMs of a single block of the
lattice, which consist of the BS transformation followed by
free propagation over length d. Since losses are neglected,
the two eigenvalues of the TM of a single block are ¢*©
with ® € C. The parameter O, related to the quasimo-
mentum, is given by the solution of cos® = coskd —
{ sinkd [4]. In our case, this is given by

sin® = (A/2; m/2<0 <. (11)

We next apply the TM method to a perturbed OL where
the /-th cloud is displaced by an infinitesimal amount. The
calculations lead to explicit formulas for the matrix D
which we omit here for the sake of brevity. Two important
properties of D must be mentioned. First, D ;; depends only
on [ — j: D is Toeplitz matrix. In particular, forD <0,all
clouds are trapped in identical wells. Second, D is not
symmetric. This shows that F; is not a conservative force:
if it were, F; = —9/dx;V(x; ... xy) would imply that D is
a Hessian matrix, symmetric by Young’s theorem. Note
that reflection symmetry of the system is broken by the
pump asymmetry.

The eigenvalue problem of a nonsymmetric real matrix
is in general not trivial. We have found, however, that a
generalized Fourier transformation with complex wave
numbers diagonalizes D exactly. The analytical formulas
for the eigenvectors v, and eigenvalues z; of D, with b =

0,...,N—1,read
[v,]; = (P, 1
4/Psin20® -
_ B@COSG)[] + (Wemb/N _ e—mb/N)z} , (13)

where B = 8k{I,/c is related to the oscillation frequency
wq of a single cloud in a symmetric (incident laser inten-
sities Iy = I} = €yl Ey|*c/2) trap by mw3 = B. Because of
the pump asymmetry, the eigenmodes (12) of the lattice are
complex, except for b = 0, which is a distorted center-of-
mass mode and, if N is even, b = N /2, the density wave of
highest wave number possible (77/d). These two modes are
always stable, as zy/, < zo < 0. Since D is real, all other
modes form conjugate pairs: z, = zj_, and v, = vy _,.
We briefly discuss the meaning of these eigenmodes below.

Consider a pair of complex eigenvalues z, = zj,_, with
0<b<N/2 and the corresponding eigenvectors v, =
Vy_p- Both Re(v,) and Im(v,) describe density waves of
wavelength Nd/b, modulated so their amplitude increases
towards the stronger pump. Now time evolution by (9) does
not lead out of the subspace of R" spanned by these modes:

for any superposition ¢ = pRe(v,) + gIm(v,) with p, g €
R, Eq. (9) is equivalent to a single complex linear differ-
ential equation, whose general solution is

ptig=c ertiodt 4 o plktio)t (14)
Here, c. = p+ + iq. are arbitrary constants, and

-t 1/,u,z + 4mz;
) = b (15)

2m

(ke +iw~

with k_ <k, to fix notation. This corresponds to two
superimposed density waves of wavelength Nd/b, one
copropagating with the stronger beam (w_ < 0), and one
counter-propagating (w > 0). Their phase velocities are
given by Nd|w.|/(27b). The copropagating wave is ex-
ponentially damped with constant k_ << 0, but the counter-
propagating wave can be either damped or amplified. Thus,
this pair of modes is stable if k. << 0, which corresponds to

m(Imz,)? < — u’Rez,,. (16)

For symmetric pumping A = 0, the matrix D is sym-
metric, its eigenmodes (12) are the Fourier components,
and the eigenvalues (13) are all real and negative; thus, the
lattice is stable. Almost all modes have the same frequency
as a single trapped cloud, z; =z, =,...,=zy = — 6,
except the center-of-mass mode, with zo =—-B/(1+
N2{?), which becomes soft if N — oo.

With the introduction of a pump asymmetry A > 0, the
eigenmodes and the eigenvalues acquire imaginary parts,
and as A is increased, the real parts of the eigenvalues turn
positive one by one. The first few eigenvalues are shown as
functions of A for two examples in Fig. 3. In the “strong
collective coupling,” NZ >> 1 limit [Fig. 3(a)], we observe
clearly separated resonances. In this limit, whenever 7 —
® < 7/N, we have YP =~ 1, and the denominator of (13)
is approximately 1 — sm2® /sin®(b/N), which, with
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FIG. 3 (color online). Real (thick line) and imaginary (thin

line) part of the first few eigenvalues z; (continuous line), z,

(slashed line), z3 (dotted line), for a lattice of N = 100 (a) and
= 10 (b) clouds of polarizability { = 0.1 each.
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FIG. 4 (color online). Time dependence of position distortions
£ (in color coding, in units of 10731) in an asymmetrically
pumped overdamped optical lattice of N = 100 clouds with
polarizability { = 0.1, after excitation of mode Re(v;) at t = 0
with amplitude 1073 \. The continuous gray contour line is & =
0. In (a), the system is subcritical: A = 0.632 and z,/8 =
—0.55 — 6.88i. The excitation results in a density wave prop-
agating towards the stronger beam and dying out. In (b), at
supercritical asymmetry A = 0.655, the eigenvalue is z;/8 =
1.48 — 5.94i. The density wave is now amplified, and at 7 =
0.5uAc/Iy = 2.5u/B, we leave the linear regime. Then a local
drop in the lattice constant develops at x = 30A, which will
result in two clouds coalescing, and eventually all particles will
be pushed away by the stronger beam (not shown in figure).

Eq. (11), places the resonance for mode b at A =~ A, =
2bw/(N{). We remark that A = 277/(N{) fits the bound-
aries between the shaded areas of Fig. 2 almost perfectly
for /A < 1. Outside of the strong collective coupling re-
gime [Fig. 3(b)], the resonances are not well resolved. It
may even happen (as in the plotted example) that mode
b = 2 becomes absolutely unstable (Rez, > 0) at lower A
than mode b = 1. This causes the “shoulder”” in the N =
10 instability limit on Fig. 2. At the critical asymmetry
A =2/ =20, we have ® = 77/2, and all eigenvalues
are 0; for A > 20, all modes are unstable.

A few remarks about the nature of these eigenmodes and
the instability are in order. Two time scales govern the

dynamics of the OL: 7, = \/m/|Rez,| of the oscillations
and 7, = m/u of damping. For weak damping 7, < 7,4,
modes with nonzero Imgz, are potentially unstable, but
damping can restore their stability cf. Eq. (16). At the other
extreme, in the overdamped limit 7, < 7, the dynamics is
effectively first order: the copropagating mode is ‘““damped
out.” For the counter-propagating mode, we have w, =
—Imz,/u and k. = Rez,/w. Even with arbitrarily strong
damping, the OL becomes unstable if Rez;, > 0, as the rhs
of (16) is negative. This “absolute instability’’ is used to
define the shaded areas of Fig. 2. We illustrate the dynam-
ics close to the absolute instability limit in Fig. 4, showing

the results of numerical integration of Eq. (8) in the over-
damped regime near this limit.

Dynamical instabilities resulting from asymmetric
pumping have been observed in a far-detuned OL where
atom-light interaction was amplified by a ring cavity [13].
In free space, near-resonant light has to be used, and thus
the influence of spontaneous photons poses serious experi-
mental limitations. We checked via simulation that the
dissipative scattering force induces quantitative, but no
qualitative changes as long as [Im{] < |Re!]|/100.
However, spontaneous emission also heats the clouds,
putting an upper limit on the time scale accessible by an
experiment and complicating the very creation of the OL.
One possible way to circumvent the latter problem could
be creating the OL at larger detuning, where spontaneous
heating is negligible, and then continuously decreasing the
detuning of the trap beams down to the desired value. As
for the time scale of an experiment, we estimate that, e.g.,
for a cold gas of Rb atoms in a dipole trap detuned by A =
—10y, forming N = 10* disk-shaped clouds, at pump
power ratio P = 10, the destabilization rate «, can exceed
the heating rate by orders of magnitude if the surface
density of the clouds is 7 > 100/A2.
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