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Quantum calculations of a (1� 1)-dimensional model for double ionization in strong laser fields are
used to trace the time evolution from the ground state through ionization and rescattering to the two-
electron escape. The subspace of symmetric escape, a prime characteristic of nonsequential double
ionization, remains accessible by a judicious choice of 1D coordinates for the electrons. The time-resolved
ionization fluxes show the onset of single and double ionization, the sequence of events during the pulse,
and the influences of pulse duration and reveal the relative importance of sequential and nonsequential
double ionization, even when ionization takes place during the same field cycle.
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Double ionization in intense laser fields has been chal-
lenging because of a yield much higher than derived from
independent electron calculations, thus demonstrating the
significance of electron interactions (see [1], and referen-
ces therein). High resolution experiments revealed that the
two outgoing electrons preferably leave the atom side by
side, with the same parallel momenta [1,2]. The theoretical
understanding and interpretation of this process is still far
from being complete. The most accurate representations of
the process, i.e., the exact solution of the time-dependent
Schrödinger equation for two electrons in a laser field [3]
or S-matrix calculations [4], are computationally demand-
ing and still do not fully represent the experiments. Low-
dimensional models frequently sacrifice the experimen-
tally dominant subspace of symmetric escape by restricting
the electrons to move along a common line (aligned-
electron models) [5,6] or introduce other correlations, as
in Ref. [7], where the motion of the electron center of mass
is restricted to be along the field polarization axis. The
(1� 1)-dimensional model we present here removes these
drawbacks and allows for efficient calculations which give
time- and momentum-resolved insights into the dynamics
of the process, from the turn-on of the field to the final
escape of the electrons. While we concentrate here on
double ionization of atoms in sinusoidal pulses, the con-
struction of the reduced dimensionality model as well as
the dynamical approach are quite general and can be
applied to different pulses and in different situations deal-
ing with the interaction of strong external fields with atoms
or molecules.

The model is motivated by the rescattering scenario [8].
While most electrons leave the atom directly and contrib-
ute to the single ionization channel, some have their paths
reversed by the field and return to the core. The accelera-
tion by the field brings in enough energy so that, when this
energy is shared with another electron close to the nucleus,
each has enough energy to ionize. During the collision with
the other electron, a short-lived compound state is formed

which then decays into different possible channels: double
ionization, single ionization, or a repetition of the rescat-
tering cycle. Starting from this intermediate state, a clas-
sical analysis easily yields possible pathways to ionization
[9]. The classical model of nonsequential double ionization
(NSDI) suggests that the electrons may escape simulta-
neously if they pass sufficiently close to a saddle that forms
in the symmetric subspace in the presence of the electric
field. As the field phase changes, the saddle for this corre-
lated electron escape moves along lines that keep a con-
stant angle with respect to the polarization axis.

The observation that the saddles move along lines
through the origin suggests a model where each electron
is confined to move along this reaction coordinate [10].
This is the main difference between our model and the
aligned-electron models, where a symmetric motion of the
electrons is not possible because it is blocked by Coulomb
repulsion between the electrons. With the present model,
we are able to reproduce tunneling and rescattering pro-
cesses and single and sequential double ionizations and to
correctly mimic the possible contributions to correlated
electron escape at all energies. Moreover, because of the
restriction to 1� 1 degrees of freedom, we can integrate
the model with standard methods.

Taking into account that the lines form an angle of �=6
with the field axis [9], the restricted classical Hamiltonian
for the two electrons in the linearly polarized laser field is
given by (in atomic units) [10]
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where ri are the electron coordinates along the saddle lines.
The electric field is F�t� � Ff�t� sin�!t���, with ampli-
tude F, envelope f�t�, frequency ! (here ! � 0:06 a:u:),
and phase �. For a fixed time and field F�t�, the poten-
tial energy (1) has a saddle located in the invariant sym-
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metric subspace r1 � r2 and p1 � p2 at jr1j � jr2j �
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[11]. If the

electrons pass close to this saddle and sufficiently close to
the symmetric subspace, they can leave the atom simulta-
neously. The saddle defines the bottleneck for simulta-
neous escape. Once the electrons are outside the barrier,
they are accelerated by the field and escape. Any asymme-
try of electron motion around the saddle can be amplified
by the field. Thus, even if they escape simultaneously, their
final momenta can be quite different (see Ref. [10] for
examples of classical trajectories in a static field). In this
Letter, we analyze the quantum dynamics of this model by
solving the time-dependent Schrödinger equation numeri-
cally by a Fourier method. The Coulomb singularities in
the potential in (1) are smoothed by the substitution 1=x!
1=

��������������
x2 � e
p

, with e � 0:6, which leads to a ground state
energy of the unperturbed atom of Eg � �2:83.

For the analysis of the outgoing electrons, we follow
Ref. [3] and define regions in the configuration space that
correspond to the neutral atom (A), the singly ionized atom
(Si), and the doubly ionized atom (Di) (see Fig. 1). These
definitions are suggested by practical considerations and
correspond effectively to a truncation of the long range
effects of the Coulomb potential at these distances. The
regions allow us to distinguish between the sequential and
the nonsequential (simultaneous) double ionization by cal-
culating the probability fluxes between the appropriate
regions: (i) The population of the singly ionized states at
a time t is obtained from the time integration of the fluxes
from A to Si minus the fluxes from Si to Di; (ii) the
population of NSDI states is obtained from the time inte-
gration of the fluxes from A to D1 and from A to D3;
(iii) integration of the fluxes from Si to Dj gives a measure
of sequential double ionization (SDI) processes. The fluxes
from A to D2 and from A to D4 correspond to anticorre-
lated double ionization: They give negligible contributions
to the double ionization process and will not be considered
further here. Note that the definition of the fluxes allows us
to distinguish two contributions to the instantaneous

double ionization yield: Electrons may pass directly from
region A to D1, say, or they may first cross over to S1 and
then to D1. The essential difference between the two paths
is that in the first case electron interactions are significant,
whereas in the second case the electrons remain suffi-
ciently far apart that their interactions are negligible. We
will limit the use of the term NSDI to the first situation,
where electron-electron interactions remain relevant also
in the outgoing channel. Other multiple ionization pro-
cesses, such as recollision excitation of the second electron
(RESI) as discussed in Ref. [12] are collected in the SDI
channel.

As a first result, we show the ionization yields for the
different subspaces in Fig. 2. They are calculated from the
fluxes as described in the preceding section. For intermedi-
ate fields, the NSDI and SDI signals are about equal, but for
higher fields SDI rises sharply, forming the well-known
knee: In hindsight, it is clear that only the sequential
double ionization can show the knee, as it derives from
the strong increase of independent electron ionization at
high fields. The NSDI signal, on the other hand, seems to
saturate for field amplitudes above about 0.25 a.u.

The time ordering of the process, resolved into the
different fluxes, is shown in Fig. 3 for a field strength of
F � 0:16, below the knee. Up to the fourth extremum, the
field is not strong enough to ionize any electrons. Shortly
thereafter, singly charged ions appear but no doubly
charged ones. Immediately after the fifth extremum, a
strong single ionization is observed as well as a first double
ionization signal. Note that the maximum of double ion-
ization occurs shortly after the extremal field strength, at
about the same time as the maximum in the single ioniza-
tion signal. This shows that a significant fraction of the
double ionization events occur when the field is still on.
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FIG. 1. Geometry of the model. The left frame shows the lines
along which the electrons can move. The right frame shows the
division of the configuration space r1-r2 into domains assigned
to the neutral atom A, singly charged ions Si, and doubly
charged ions Di, each with indices 1; . . . ; 4. The polarization
axis points along z.
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FIG. 2. Yields for single ionization (circles), sequential double
(triangles) ionization, and nonsequential double (squares) ion-
ization as a function of the field amplitude. The data are obtained
for the initial phase of the field � � 0 and the pulse envelope
f�t� � sin2��t=T�, where pulse duration T equals 5 field cycles.
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The momentum distributions of the outgoing electrons
are obtained following the method proposed in Ref. [6],
where the wave function is propagated with all interactions
in a region of width 400 a:u:� 400 a:u: Outside this do-
main, the wave function is transformed to the momentum
space where time evolution (with neglected Coulomb po-
tentials and in the velocity gauge) becomes simply a multi-
plication by a time-dependent phase. Fourier transforms of
the parts of the wave function in the regions jr1j; jr2j>
200 a:u: then give the momentum distributions in Fig. 4.

The panels in Fig. 4 are calculated for the same parame-
ters as for Fig. 3 and give the momentum distribution at
successive extrema of the field. The sequence starts with
the extremum at 3.75 cycles, as there is no noticeable wave
function amplitude in the range jr1j; jr2j> 200 a:u: for
earlier extrema. The wave function that gives rise to the
NSDI near times of t � 2:25 oscillates with the field and
extends into this space region only about 1.5 cycles later.
With this delay taken into account, the first signals in the
NSDI sector in Fig. 4 correspond to the first signals in
Fig. 3. The momentum distributions in the first four panels
in Fig. 4 start out very much concentrated along the diago-
nal p1 � p2. This confirms that the bottleneck for double
ionization is the saddle configurations in the symmetric
subspace, described in Ref. [9]. The distributions also show
that, during the first few cycles, there is a strong correlation
between the direction of the extremum of the field and the
momenta of the ejected electrons. Later on, also the other
quadrants are populated, with the main contribution per-
haps coming from accumulated rescattering excitations
(RESI) [12].

After a few cycles, the different ionization signals in
Fig. 3 and the momentum distributions in Fig. 4 experience

significant spreading and distortion. They then no longer
reflect the sequence of extrema and rescattering events, and
the temporal relation between the individual processes gets
blurred. Moreover, as time goes on, less correlated and
purely sequential processes become more important. This
suggests that the structure of the process can best be
resolved with short pulses, say, up to 3 field cycles. This
is shorter than the pulses used so far [2] but within experi-
mental reach [13].

The time ordering of the process and, in particular, the
presence of the field when the electrons return to the
nucleus in the rescattering event can also be understood
from the classical dynamics, as in Ref. [8], if the Coulomb
field is taken into account. To this end, we show in Fig. 5
the results from a classical trajectory calculation. As in
Ref. [8], we assume that an electron that tunnels out is
released with zero momentum at the other side of the
potential barrier. It is then integrated classically until it
returns to the atom. Since the process involves motion of a
single electron along the field axis, we can take a 1D
Hamiltonian H1�p

2=2�1=
�������������
r2�e
p

�r�
���
3
p
=2�Fsin�!t�.

The electron that tunnels through the Stark barrier starts
with an energy �0:83 a:u:, equal to the energy difference
between the ground state of a He atom and a He� ion in our
model [8]. If the field is weak, the electron starts far from
the core and can acquire considerable energy while the
field brings it back. However, such processes are very
unlikely since the tunneling probability is negligible. The
relevant energy parameter when the electron returns to the
nucleus is the difference between energy of the two-
electron system E�tr� and the potential energy of the saddle
Vs�tr� [9,10], defining �E � E�tr� � Vs�tr�. The data col-
lected in Fig. 5 (corresponding to F � 0:16) clearly show
that most electrons return while the field is still on, in
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FIG. 4 (color online). Time-resolved electron momentum dis-
tributions corresponding to the field parameters in Fig. 3. The
times equal the extrema of the field strengths, indicated by the
dashed lines in Fig. 3, starting with the one at t � 3:75 cycles
(top left) and ending with 7.25 (bottom right).
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FIG. 3. Probability fluxes (in arbitrary units) as a function of
time. (a) shows the field strength for F � 0:16. (b) shows the flux
related to the single ionization, and (c) and (d) show the non-
sequential and sequential double ionization yields, respectively.
The field has an initial phase � � 0, a duration of 8 cycles, and
is switched on and off linearly over 2 cycles.
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agreement with the sequence of events documented in
Fig. 3. For smaller F, the range of positive excess energy
shrinks and moves towards larger values of t0, where the
tunneling probability is negligible. This indicates that as F
increases one cannot expect a sharp threshold behavior

for the correlated simultaneous escape, since the contribu-
tions from the correlated events grow smoothly with field
amplitude.

Figure 6 shows results for an eight-cycle pulse and
different field strengths. The figure can be compared with
Fig. 1 of Ref. [6] obtained in the aligned-electron model,
where, due to the overestimated Coulomb repulsion, the
area around p1 � p2 is not populated. Here this region is
accessible and provides information about the correlated
electron escape. With increasing F, the double ionization
signal increases, but above the knee (F � 0:4) the strong
contributions in the second and fourth quadrants show the
strong influence of SDI. The distributions for undeter-
mined phase and wide averaging in Fig. 6(d) still show
the strong concentration of the momentum near the diago-
nal, but the interference structures in the corresponding
Fig. 6(b) are washed out. The investigation of these inter-
ference patterns is the subject of ongoing work.
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FIG. 6 (color online). Final electron momentum distributions
for different field strengths. The pulse is 8 cycles long with a
linear switch on and off over 2 cycles. The momentum distri-
butions are averaged with a Gaussian of width 0.07 a.u. to model
experimental resolution (and to remove finite size fluctuations
from our numerical grid). The field phase is � � 0, and the
amplitudes are (a) F � 0:08, (b) F � 0:16, and (c) F � 0:4. In
order to show the effects of a varying phase and broader
smoothing, (d) shows results for F � 0:16 but averaged over
an undetermined phase � and a wider Gaussian window of
0.2 a.u. The data are the Fourier transforms of the parts of the
wave function (evolved one more cycle after the pulse is gone) in
the regions jr1j; jr2j> 100 a:u:
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FIG. 5. Rescattering in a 1D model at F � 0:16. (a) shows the
return time tr, (b) the excess energy at the recollision moment tr,
and (c) the tunneling probability, obtained from a semiclassical
estimate / e�S, where S is the action of a tunneling trajectory, in
unscaled units. The abscissa for all panels is the point in time
where the electrons tunnel through the barrier (their initial
energy is �0:83). Dashed lines in (a) and (b) show the results
of the model with neglected Coulomb potential [1,8].
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