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We reexamine the three-body problem in the framework of general relativity. The Newtonian N-body
problem admits choreographic solutions, where a solution is called choreographic if every massive
particle moves periodically in a single closed orbit. One is a stable figure-eight orbit for a three-body
system, which was found first by Moore (1993) and rediscovered with its existence proof by Chenciner
and Montgomery (2000). In general relativity, however, the periastron shift prohibits a binary system from
orbiting in a single closed curve. Therefore, it is unclear whether general-relativistic effects admit
choreography such as the figure eight. We examine general-relativistic corrections to initial conditions
so that an orbit for a three-body system can be choreographic and a figure eight. This illustration suggests
that the general-relativistic N-body problem also may admit a certain class of choreographic solutions.
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Introduction.—The three-body problem in the Newton
gravity is one of the classical problems in astronomy and
physics (see, e.g., [1]). In 1765, Euler found a collinear
solution, and Lagrange found an equilateral triangle solu-
tion in 1772. It is impossible to describe all the solutions to
the three-body problem even for the 1=r potential. In fact,
Poincarè proved that we cannot analytically obtain all of
the solutions, and the number of new solutions is increas-
ing [2]. Therefore, the three-body problem remains unset-
tled even for the Newtonian gravity. The Newtonian
N-body problem admits choreographic solutions, which
have attracted increasing interest. Here, a solution is called
choreographic in the celestial mechanics if every massive
particle moves periodically in a single closed orbit. In fact,
a choreographic figure-eight solution to the three-body
problem was found first by Moore [3] and rediscovered
with its existence proof by Chenciner and Montgomery [4].

The theory of general relativity is currently the most
successful gravitational theory describing the nature of
space and time, and well confirmed by observations.
Especially, it has passed ‘‘classical’’ tests, such as the
deflection of light, the perihelion shift of Mercury and
the Shapiro time delay, and also a systematic test using
the remarkable binary pulsar ‘‘PSR 1913+16’’ [5]. It is
worthwhile to examine the three-body (or, more generally,
N-body) problem in general relativity.N-body dynamics in
the general-relativistic (GR) gravity plays important roles
in astrophysics. For instance, the formation of massive
black holes in star clusters is tackled mostly by
Newtonian N-body simulations (see, e.g., [6]). However,
it is difficult to work out in general relativity compared
with the Newtonian gravity, because the Einstein equation
is much more complicated [7] (even for a two-body system
[8–11]). In addition, future space astrometric missions
such as SIM and GAIA [12–14] require a general-
relativistic modeling of the solar system within the accu-
racy of a microarcsecond [15]. Furthermore, a binary plus
the third body were discussed also for perturbations of

gravitational waves induced by the third body [16–19].
In this Letter, we do not intend to solve the N-body prob-
lem in general relativity under a general situation. Instead,
we shall focus on a choreographic solution. No choreo-
graphic solution has been found to the general-relativistic
N-body problem so far.

In a two-body system, the post-Newtonian corrections
cause the periastron shift so that the binary system cannot
orbit in a single closed curve as shown in Fig. 1 [7]. As a
result, it is unclear whether general-relativistic perturba-
tions admit a choreographic solution as the figure eight.
One may thus ask, What happens for the figure-eight in
Einstein’s gravity? Specific questions may arise, such as:
Does the figure-eight cause periastron shift? Does the
figure-eight make a transition to an open orbit in the
general-relativistic gravity? The purpose of this Letter is
to answer these questions by carefully examining general-
relativistic effects to initial conditions for being a choreo-
graphic solution.

This Letter is organized as follows. First, we briefly
summarize the choreographic figure-eight solution in the
Newton gravity. Next, we analytically examine initial con-
ditions and numerically solve the Einstein-Infeld-Hoffman
(EIH) equation of motion in order to obtain a choreo-
graphic solution in general relativity. Throughout this
Letter, we take the units of G � c � 1.

Newtonian choreographic solution.—As mentioned
above, it is impossible to describe all the solutions to the
three-body problem even for the 1=r potential. The sim-
plest periodic solutions for this problem were discovered
by Euler (1765) and by Lagrange (1772). Euler’s solution
is a collinear solution, in which the masses are collinear at
every instant with the same ratios of their distances.
Lagrange’s solution is an equilateral triangle solution in
which each mass moves in an ellipse in such a way that the
triangle formed by the three bodies revolves. Built out of
Keplerian ellipses, they are the only explicit solutions. In
these solutions, each mass moves on an ellipse. A choreo-
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graphic solution for which three bodies move periodically
in a single figure-eight orbit was found first by Moore by
numerical computations [3]. The existence of such a
figure-eight orbit was proven by Chenciner and
Montgomery [4]. This solution is stable in the Newtonian
gravity [20,21]. The figure-eight orbit seems unique up to
scaling and rotation according to all numerical investiga-
tions, and at the end its unicity has been recently proven
[22]. Furthermore, it is shown numerically that fourth,
sixth, or eighth order polynomials cannot express the
figure-eight solution [21]. Nevertheless, no analytic ex-
pression in closed forms for the figure-eight trajectory
has been found up to now. Therefore, in this Letter, we
numerically prepare the figure-eight orbit.

For simplicity, we assume a three-body system with
each mass equal to m. Without loss of the generality, the
orbital plane is taken as the x-y plane. The position of each
mass (mA) is denoted by (xA; yA) for A � 1; 2; 3. Figure 2
shows the figure-eight orbit, where we take the initial con-

dition as ‘ � �x1; y1� � ��x2;�y2� � �97:00;�24:31�,
�x3; y3� � �0; 0�, and VNewton�� _x3; _y3�� ��2 _x1;�2 _y1��
��2 _x2;�2 _y2�� ��0:09324;�0:08647�, where a dot de-
notes the time derivative [21]. When one mass arrives at
the knot (center) of the figure eight, ‘ � j‘j is half of the
separation between the remaining two masses. It is conve-
nient to use ‘ instead of a distance between the knot and the
apoapsis, because the inertial moment is expressed simply
as 2m‘2. The orbital period is estimated as TNewton �

6:326m�1=2‘3=2 � 104�M�=m�
1=2�‘=R��

3=2 sec , where
M� and R� are the solar mass and radius, respectively.
Obviously this system has no Killing vector as seen in
Fig. 2. Here, we should note that ‘ is taken as 100, while
it is unity in previous works. This is because we will treat
the post-Newtonian correction in terms of the ratio be-
tween the mass and the separation such as ‘. In our case,
the ratiom=‘ is 0.01; that is, the post-Newtonian correction
becomes about 1%. In the equation of motion, the second
post-Newtonian (2PN) corrections of the order of �m=‘�3

can be safely neglected, if m=‘ is very small, say, 10�8. In
this case, however, the Newtonian and relativistic orbits
will be indistinguishable. In order to demonstrate the dif-
ference between the two orbits, we choosem=‘ as 0.01, for
which the first post-Newtonian (1PN) terms are several
dozens times larger than 2PN terms. In our computations,
which are not long-time integrations over, say, thousands
orbital periods, we can assume that 1PN terms are enough
to bring major relativistic effects.

Post-Newtonian figure-eight orbit.—In the previous
part, the motion of massive bodies follows the Newtonian
equation of motion. In order to include the dominant part of
general-relativistic effects, we take account of the terms at
the first post-Newtonian order. Namely, the motion of the
massive bodies obeys the EIH equation of motion [7]. The
EIH equation is derived also from the first post-Newtonian
Lagrangian as [23]
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where we define

 r AB � rA � rB; (2)

 rAB � jrABj; (3)

 n AB �
rAB
rAB

: (4)

Figure 2 shows an orbit of a body starting at the
Newtonian initial condition described above. In Fig. 2, a
figure-eight orbit does not seem to survive at the 1PN order.

 

FIG. 2. Figure-eight orbits starting at the Newtonian initial
condition. The solid curve denotes a figure-eight orbit in the
Newtonian gravity. The dashed curve denotes a trajectory of one
mass following the EIH equation of motion under the same
Newtonian initial condition.

 

FIG. 1. A schematic figure for a binary orbit in general rela-
tivity. The orbit is not closed any more, because of the periastron
shift.
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However, this is not the case. We should note that the initial
condition at the 1PN order does not necessarily coincide
with that for the Newtonian gravity. We will thus carefully
examine the initial condition by taking account of 1PN
corrections. For this purpose, we assume that both the
linear and the angular momenta are zero (i.e., P � 0 and
L � 0).

We should remember v1 � v2 � ��v3�=2 for the
Newtonian figure-eight orbit, for which both the total
linear and angular momenta are zero. The changes in v1

and v2 are expressed by using two vectors v3 and ‘, which
are linearly independent.

Hence, the initial velocity of each mass is parametrized
as

 v 1 � kV � �
m

‘3 �V 
 ‘�‘; (5)

 v 2 � kV � �
m

‘3 �V 
 ‘�‘; (6)

 v 3 � V; (7)

where k is expressed as

 k � �
1

2
� �jVj2 � �

m
‘
: (8)

Here, the 1PN terms have either jVj2 or m=‘. If P � 0 and
L � 0, there is no need of jVj2 in front of ‘ in Eqs. (5) and
(6), as shown below.

The linear and angular momenta are calculated from the
first post-Newtonian Lagrangian [23]. Here, we impose the
condition of P � 0 and L � 0 at 1PN order. Then, we
determine the 1PN coefficients as

 � � � 3
16; (9)

 � � 1
8; (10)

 � � 1
8: (11)

Up to this point, V is arbitrary. Next, we determine V.
The initial velocity of the particles can be different from

that for the Newtonian gravity. The post-Newtonian effects
affect both the magnitude and the direction of the velocity.
Therefore, by using two linearly independent vectors, ‘
and VNewton, we parametrize the initial velocity as

 V �

�
1� �

m
‘

�
VNewton � �

m
‘
‘

‘

�
VNewton 


‘

‘

�
; (12)

where it is sufficient to express 1PN corrections in terms of
either m=‘ or jVNewtonj

2 in numerical computations,
though both are necessary for analytic calculations of P �
0 and L � 0. For convenience sake, we choose m=‘ in
Eq. (12).

By numerically performing trial and error iterations until
achieving a periodic orbit, we find

 � � �3:3; (13)

 � � �3:7: (14)

Here, the iterative computations are done until we find the
values of � and � for which the three masses simulta-
neously return to their initial positions. Our procedure is as
follows. If and only if one particle returns to the neighbor-
hood of its initial position (i.e., the origin for the particle
labeled by 3) within the positional deviation of 0.01, we
measure how far the remaining two particles are from their
initial positions at the same moment when the particle is
closest to the initial position. For Eqs. (13) and (14), the
sum of the square distances is minimized as approximately
0.1. This is sufficient for ‘ � 100 and m=‘ � 0:01, be-
cause expected positional shifts after one cycle are of the
order of unity or more. For instance, such a shift exceeds 10
for � � � � � � � � � � 0 in Fig. 2.

We integrate the motion over 10 cycles to confirm the
periodicity. After 10 periods, the found solution comes to
the same point within the deviation of �1. The numerical
computation gives the orbital period as

 TGR �

�
1�

6m
‘

�
TNewton: (15)

The relativistic figure-eight orbit appears to be stable, in
the sense that we recognize ‘‘figure-eight-like’’ orbits that
resemble figure eight for slightly different values of � and
�. It is a future subject to analyze the long-time stability of
the relativistic figure eight.

Figure 3 shows that a figure-eight orbit is still closed
even after including the dominant general-relativistic ef-
fects. In Fig. 3, we can recognize an asymmetric difference
between the Newtonian figure-eight orbit and the general-
relativistic one. The deviation is partly fiducial, because the

 

FIG. 3. Figure-eight orbits. The solid curve denotes a figure-
eight orbit in the Newtonian gravity. The dashed curve denotes a
figure-eight orbit at the 1PN order of general relativity.
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principal axes of the GR figure-eight orbit are not along the
x and y axes. That is, ‘, which defines the direction of the
initial position of a particle with respect to the principal
axes, changes slightly at the 1PN order. The axes are
inclined by 0.012 rad with respect to those of the
Newtonian figure-eight orbit. Now, we choose the x axis
as the principal axis for both the Newtonian figure-eight
orbit and the general-relativistic one. After choosing the
principal axes, Fig. 4 shows a general-relativistic choreo-
graphic solution at the first post-Newtonian order. The
solution recovers line symmetry with respect to the x and
y axes. There are no significant differences in the velocity
between the Newtonian and GR figure-eight orbits. One
may notice that the 2PN terms are neglected. It would be
safer to choose m=‘ as 10�8, for instance, and then on the
figures to exaggerate the differences between the
Newtonian and post-Newtonian solutions in order to
make them visible.

Finally, we mention the possibility of three-body sys-
tems in a choreographic orbit such as a figure eight. As a
new outcome of binary-binary scattering, the figure-eight
orbit was discussed for presenting a way of detecting such
an orbit in numerical computations [24]. According to the
numerical result, the probability of the formation of figure-
eight orbits is a tiny fraction of 1%. The gravitational
waves emitted by the figure-eight orbit have been recently
studied by assuming the motion in the Newton gravity [25].
By evaluating the radiation reaction time scale, it is shown
also that figure-eight orbit sources emitting gravitational
waves may be too rare to detect.

Conclusion.—We obtained a general-relativistic initial
condition for being a figure-eight orbit. This condition
provides the first choreographic solution taking account
of the post-Newtonian corrections. It is interesting to in-
clude higher post-Newtonian corrections, especially 2.5PN

effects, in order to elucidate the backreaction on the evo-
lution of the orbit due to the gravitational waves emission
at the 2.5PN order. If the system is secularly stable against
the gravitational radiation, it is probable that one might see
a shrinking ( _‘ < 0) figure-eight orbit as a consequence of a
decrease in the total energy ( _E< 0). This speculation will
be confirmed or rejected in the future. It may be important
also to look for other relativistic choreographic solutions
for a system including four or more masses. It is possible
that some of Newtonian choreographic solutions are pro-
hibited by general-relativistic effects. Further investiga-
tions along these lines will allow us to probe many-body
dynamics in the Einstein gravity.
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FIG. 4. Relativistic figure-eight orbit. The principal axes of the
orbit are chosen as x and y axes.
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