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We derive the boundary condition for a subdiffusive particle interacting with a reactive boundary with a
finite reaction rate. Molecular crowding conditions, that are found to cause subdiffusion of larger
molecules in biological cells, are shown to effect long-tailed distributions with an identical exponent
for both the unbinding times from the boundary to the bulk and the rebinding times from the bulk. This
causes a weak ergodicity breaking: typically, an individual particle either stays bound or remains in the
bulk for very long times. We discuss why this may be beneficial for in vivo gene regulation by DNA-
binding proteins, whose typical concentrations are nanomolar.
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The interaction of a diffusive particle with a reactive
boundary is of fundamental importance in interface science
and technology, e.g., to transport in porous media [1],
interactions of proteins with artificial surfaces and mem-
branes [2], or applications such as foam relaxation and
surfactants [3]. For a Brownian particle this has been
studied extensively, especially concerning the question of
how bulk exchange influences the surface distribution of
intermittently adsorbed particles [4]. Here, we derive the
exchange dynamics with a reactive boundary of a subdif-
fusing particle, whose unbinding and rebinding times in a
molecular crowding environment are both shown to follow
long-tailed distributions. We demonstrate a weak ergodic-
ity breaking for the particle trajectory.

This is of particular interest for the search of DNA-
binding proteins for their specific binding site on DNA
involving successive events of nonspecific binding to the
DNA and bulk excursions, such that the time spent in either
of these events is important in the understanding of the
various stochastic mechanisms involved in (bacterial) gene
regulation [5–7]. While the generally applied assumption
of Brownian diffusion of proteins works well for typical
in vitro experiments under dilute conditions, in vivo the
abundance of a multitude of biomacromolecules in the
cellular cytoplasm have been shown to cause a state of
molecular crowding: large molecules such as proteins,
lipids, RNA molecules, and ribosomes make up up to
40% of the cytoplasmic volume [8,9]. In this superdense
environment they hinder each other’s motion, causing
subdiffusion [10–13], with a mean squared displacement
hr2�t�i / t�, 0<�< 1 being a dynamic exponent [14]. By
fluorescent methods, subdiffusion was verified for proteins
in membranes with � � 0:7 [10], for proteins in a molecu-
lar crowded in vitro environment with � � 0:75 at higher
densities [11], as well as in the cytoskeleton in vivo for
messenger RNA of physical size �100 nm with � �0:75
[12] and for dextran molecules ranging from 10 kD to
2 MD with � in between 0.59 and 0.84 [13]. The occur-

rence of subdiffusion for particles with mass as low as
10 kD was also confirmed by computer simulations [13].
The Lac repressor, a typical DNA-binding protein, has
141 kD [15], for which a corresponding � � 0:73 was
found [13]. Thus, under molecular crowding conditions,
� � 0:75 seems a fairly standard value for DNA-binding
proteins and larger polynucleotides [11–13]. The time
scale over which this subdiffusion persists is not known
precisely, but appears to be longer than minutes, so that the
following considerations are expected to be relevant for
genetic processes [10–13].

To derive the generalized reactive boundary condition,
we pursue a continuous time random walk approach simi-
lar to Ref. [16]: A subdiffusing particle jumps from one
point to the next after a waiting time distributed according
to the long-tailed probability density  �t� ’ ��=t1�� (0<
�< 1) [17]. We start our derivation with the one-
dimensional lattice, on which Ai is the probability to find
the particle at lattice point i � 1; 2; 3; . . . . The probability
of being at the reactive site (lattice point next to the
boundary) is A0, the notation indicating that at site 0 the
particle can be exchanged with the bound state with rate �.
The balance equations then read
 

dAi�t�=dt � I�i �t� � I
�
i �t�; (1a)

dA0�t�=dt � I�0 �t� � I
�
0 �t� � �A0�t�; (1b)

and the loss from a given lattice site due to diffusion is
 

I�i �t� �  �t�Ai�0� �
Z t

0
 �t� t0�I�i �t

0�dt0; (2a)

I�0 �t� �  ��t�A0�0� �
Z t

0
 ��t� t

0�I�0 �t
0�dt0; (2b)

where  ��t� �  �t�e��t. Substituting for I� from Eqs. (1),
we rephrase Eqs. (2) in the form I�i �t� �

R
t
0 ��t�

t0�Ai�t0�dt0. The kernel ��t� is defined by ��u� �
u �u�=�1�  �u�	 in the Laplace domain, ��u� �R
1
0 ��t�e�utdt [18]. An analogous relation holds for
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I�0 �t�, with the kernel ���u� � ��u� ��. For the gain to
site i we have, assuming that the particle jumps to left and
right equally likely, I�i � I�i�1=2� I�i�1=2 and I�0 �
I�0 =2� I�1 =2. Note that if the particle attempts to jump
left from site 0, it will be returned back to the same site.

For the continuum limit, we introduce a new time-
dependent quantity A0�t� by

R
t
0 ��t� t0�A0�t0�dt0 �R

t
0 ���t� t0�A0�t0�dt0, corresponding to A0�u� �

��u�A0�u�=���u�. Combining above results, we find

 

dAi�t�
dt

�
Z t

0
��t� t0�

Ai�1�t0� � Ai�1�t0� � 2Ai�t0�
2

dt0:

(3)

In the continuum limit A�x � ai; t� � Ai�t�=a with the

lattice spacing a [19], this equation yields

 

@A�x; t�
@t

�
a2

2

Z t

0
��t� t0�

@2A�x; t0�

@x2 dt0; (4)

for i 
 1. In the long time limit u�� 1,  �u� � 1�
�u���, and ��u� � u1����� to leading order. With K� �
a2=�2��	 and the fractional Riemann-Liouville operator,

 0D
1��
t A�x; t� �

1

����
@
@t

Z t

0

A�x; t0�

�t� t0�1��
dt0; (5)

Eq. (4) is equivalent to the fractional diffusion equation
@A�x; t�=@t � K�0D

1��
t @2A�x; t�=@x2 for x > 0 [14].

Similarly, Eq. (1b) can be recast into the form

 

d
dt

A0�t� � �
Z t

0
���1

� ���t� t0�A0�t
0�dt0 �

Z t

0
��t� t0�

A1�t0� � A0�t0�
2

dt0: (6)

In the continuum limit, we recover the expression
 

���t�A0�0��
Z t

0
��t� t0�A�0;t0�dt0 �

a2

2

Z t

0
��t� t0�



@A�x;t0�
@x

��������x�0
dt0

(7)

with ��u� � a�u� ����u�=���u�. A0�0� is 1, if the
particle is initially released at site 0, and 0 otherwise.
The reaction rate at the boundary is jreact �
a�

R
t
0��

�1
� ���t� t0�A�0; t0�dt0, and the right-hand side of

Eq. (7) represents the flux into x � 0 from positive x. We
expand Eq. (7) at u � 0 in Laplace space (note that u� �
[19]) producing the sought for reactive boundary condition

 K�0D
��
t
@A�x; t�
@x

��������x�0
� �A0�0� � k0D

��
t A�0; t� (8)

for the subdiffusive particle. This is one of the main results
of this Letter. We defined k � 2�K�=�a���u �
0�	 � a��, using that ��! 0 in the continuum limit [19].

The Berg–von Hippel model maps the binding (unbind-
ing) dynamics of a DNA-binding protein to (from) the
DNA surface onto a cylinder of radius R1 placed along
the z axis in cylindrical coordinates (r, �, z) [5]. For
particles subdiffusing in the space r > R1 with density P
the boundary condition (8) generalizes to
 

2�R1K�0D
��
t @P�r; t�=@rjr�R1

� �P0=L

� kon0D
��
t Pjr�R1

; (9)

where kon � 2�R1k, and we have assumed rotational and
translational symmetry around and along the z axis. L is
the length of the cylinder along the z axis, and P0 � 1 if at
t � 0 the particle is at the boundary, and P0 � 0 otherwise.
The rate of reaction with the cylinder per length along the z

axis is jreact�t� � kon0D
1��
t Pjr�R1

, and the fractional dif-
fusion Eq. (4) is replaced by

 

@P
@t
� K�0D

1��
t

1

r
@
@r

�
r
@P
@r

�
: (10)

Consider now the situation when the particle is bound at
the boundary at t � 0. In a crowded environment the full
escape of the particle from the boundary consists of two
steps: unbinding with rate �off , returning it to the exchange
site 0, and then avoiding to rebind to the boundary such that
the particle is unbound at the moment when the environ-
ment allows for jumping to site 1. If the particle is bound at
the time when the environment allows a jump (in princi-
ple), then the process needs to start over, etc. Thus, the
waiting time distribution for the full escape can be written
as
 

}unb�t��R�t��
Z t

0
R�t� t0���t0�dt0 �

Z t

0
R�t� t0�



Z t0

0
��t0 � t00���t00�dt00dt0� . . . ; (11)

with R�t� � ~ �t��1� Pbound�t�	 and ��t� � ~ �t�Pbound�t�.
Here Pbound�t� is the probability that the particle is bound at
time t, given that it was bound at t � 0 and that the
environment has not yet opened up to allow a jump to i �
1. This yields

 Pbound�t� �
�

�� �off
�

�off

�� �off
e�����off �t: (12)

The waiting time ~ �t� between opening events in the
environment, allowing a jump to i � 1, is given by
 

~ �t� �
 �t�

2
�
Z t

0

 �t� t0�
2

 �t0�
2

dt0 �
Z t

0

 �t� t0�
2



Z t0

0

 �t0 � t00�
2

 �t00�
2

dt0dt00 � . . . ; (13)
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where the factor 1=2 accounts for the fact that the particle
jumps to site 1 only with a probability 1=2 (and stays at 0
with probability 1=2). In Laplace space, ~ �t� can be ex-
pressed in closed form through a geometric series, ~ �u� �
� �u�=2	=�1�  �u�=2	 � 1� 2�u���. Similarly, in the
Laplace domain,
 

}unb�u� � ~ �u� ���u� � � ~ �u� ���u�	��u�

� � ~ �u� ���u�	��u�2 � . . .

�
~ �u� ���u�

1���u�
; (14)

where ��t� in Laplace space assumes the exact form

 ��u� �
�

�� �off

~ �u� �
�off

�� �off

~ �u� �� �off�: (15)

Collecting the results, we obtain for }unb at small u [19]

 }unb�u� � 1�
�� �off

�off��� �off�
� u

� � 1� u�=koff ; (16)

where in the continuum limit (�off � �) we have koff �
�off=�

1��. The unbinding times then are distributed ac-
cording to the power-law }unb ’ 1=�kofft1���. This is a
central finding of this work: The crowded environment
impeding the desorption to the bulk translates the a priori
exponential distribution of unbinding times to a power law
[20]. Once arrived at site i � 1, the particle subdiffuses in
the bulk. We consider here the cylindrical case governed by
Eq. (10). With initial condition P0 � 1 and a reflecting
boundary condition at r � R2 [22], an analytic result can
be obtained in terms of modified Bessel functions; see
Ref. [21] for details. A systematic expansion for small u
leads to the result [21]

 }reb�u� � 1� Su�=kon: (17)

with the cylindrical cross section S � ��R2
2 � R

2
1�. The

form }reb�t� � t
�1�� is typical for subdiffusion [14].

Both unbinding to the volume and returning to the
reactive boundary follow power-law forms with identical
asymptotic behavior �t�1��. The lack of a characteristic
time scale separating micro- and macroscopic events gives
rise to weak ergodicity breaking [23]. As shown in
Ref. [24], the time-averaged probability in the bound state
�pbound � limt!1tbound=t for a single trajectory, �pbound has
the distribution P � �pbound� � ���kon=�Skoff�; �pbound�, with
the Lamperti-generalized �-function [24,25]

 ����;�� �
��1 sin��������1�1� ����1

�2�1� ��2� � �2� � 2��1� ����� cos��
:

(18)

Note that P is normalized,
R

1
0 P � �pbound�d �pbound � 1, and

valid in the long t limit. It is independent of t and in that
sense an equilibrium is attained. However, while in the
Brownian limit � � 1, ergodicity and a sharply peaked
behavior for P are recovered, the very distinct behavior of

P for�< 1 is displayed in Fig. 1 for� � 0:75: as function
of � � �pbound, the distribution peaks at 0 and 1, with a
smaller maximum in between. Thus, in a single trajectory a
particle is typically either bound or unbound, indepen-
dently of the duration of the trajectory. This nonergodic
behavior is imposed on the system by the probabilityR
1
t  �t

0�dt0 � t�� of never moving, that decays very
slowly. The smaller the cross section S, the more likely is
it to find the particle in a bound state, as it should be. The
behavior of P therefore contrasts the ensemble average
over many trajectories, h �pboundi � �1� Skoff=kon�

�1, cor-
responding to the form P � �pbound� � �� �pbound �
kon=�kon � Skoff	� [24]. This can be understood as follows.
For an ensemble of particles, kon=koff defines the nonspe-
cific binding constant Kns, equal to the ratio
Nbound=�SNunbound� of bound and unbound particles nor-
malized by the cross section [7]. Then 1=�1� Skoff=kon� is
the ensemble probability that a particle is bound. Weak
ergodicity breaking is thus relevant for systems with few
particles of a given species.

Transcription factors (TFs), DNA-binding proteins reg-
ulating the transcription of a specific gene, occur at very
small numbers (a few to some hundred per cell [26]), and in
many cases it is essential for the stability of genetic circuits
that a TF is always bound at some operator site on the DNA
[27,28]. While the random motion of the TFs in most
in vitro experiments is Brownian, molecular crowding
in vivo causes subdiffusion of TFs. This would have inter-
esting consequences for gene regulation. Namely, due to
the weakly ergodic behavior demonstrated here, TFs will
typically stay close to their binding site with a diverging
characteristic time scale, such that unbinding and escape to
the volume is greatly reduced. The price to pay is that once
a TF escapes to the bulk, its return is also affected by an
infinite average time. Moreover, there exists a large class of
TFs, such as the well-studied Lac and bacteriophage 	
repressors in E. coli [28], whose specific binding site is
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FIG. 1 (color online). The distribution ��, Eq. (18), for various
�, with � � 0:75. In all cases, a divergence at � � 0 and 1 is ob-
served. The points are results from a stochastic simulation [21].
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located immediately adjacent to their coding region.
Biochemical production occurs likely within a few tens
of nm from the coding region [29], and therefore from the
targeted binding site. The weak ergodicity breaking thus
keeps those TFs within a small volume around their com-
plete biochemical cycle, very likely leading to a significant
increase in the stability of the regulation of that particular
gene. Subdiffusion caused by molecular crowding could
therefore be very beneficial for living cells, allowing them
to maintain the concentrations of even vital TFs at nano-
molar levels. This may significantly impact our current
picture of gene regulation in vivo and pose the need to
perform experiments much closer to the cellular crowding
conditions in order to obtain meaningful information for
the in vivo situation.

We derived the generalized reactive boundary condition
for the interaction of a subdiffusive particle with a bound-
ary and showed that in the molecular crowding scenario the
distribution of unbinding times becomes long tailed, with
the same exponent as the distribution of return times to the
boundary. This gives rise to weak ergodicity breaking,
relevant for systems with small numbers of diffusing par-
ticles. Apart from gene regulation, these effects will impact
cellular processes in more general, such as the interactions
of biopolymers with membrane proteins, or the exchange
of shorter DNA and RNA chains across cellular mem-
branes. Moreover, they will affect trapping phenomena in
the vicinity of soft interfaces in more general, e.g., the
exchange dynamics from ion clouds in the vicinity of
charged or polarized membranes. It should be very inter-
esting to explore these effects by single particle tracking
under molecular crowding conditions using fluorescent
labeling techniques.
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