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A Bayesian framework is developed to reconstruct the density of states from multiple canonical

simulations.

The framework encompasses the histogram reweighting method of Ferrenberg and

Swendsen. The new approach applies to nonparametric as well as parametric models and does not require
simulation data to be discretized. It offers a means to assess the precision of the reconstructed density of

states and of derived thermodynamic quantities.
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The density of states is a key quantity in statistical
mechanics. Because the temperature dependence of ther-
modynamic quantities such as the free energy can be
derived from it, the density of states completely character-
izes a thermodynamic system. Ferrenberg and Swendsen
have shown that the precision of Monte Carlo estimates of
the density of states and of the free energy improves
dramatically if multiple canonical simulations are com-
bined into a single consistent estimate [1]. The histogram
reweighting method has been generalized to potentials of
mean force and is now routinely used in biomolecular
simulation [2,3].

One drawback of histogram reweighting is that it has
been developed primarily for discrete systems and there-
fore requires binning of the variable of interest, even if the
underlying system is large or continuous. A second draw-
back is that histogram reweighting lacks a probabilistic
basis and can therefore only provide an ad hoc estimate of
the error of the reconstructed density of states (Ref. [4]
details an error analysis within the original histogram
reweighting framework). Furthermore, it is not clear how
to include properties like smoothness in the formalism.

This Letter introduces a Bayesian framework to infer the
density of states. The new framework is completely general
and applies to both discrete and continuous systems. In the
following, simulations of a system with configuration x and
energy E(x) at inverse temperatures (3 are considered.
Configurations are distributed according to the canonical
ensemble p(x|B) = exp{— BE(x)}/Z(B) with partition
function Z(B). The density of states, g(E), is defined as

g(E) = f dxS[E — E(x)] (1)

and quantifies the degree of energy degeneracy.
Knowledge of g is desirable because it allows one to
calculate the partition function by Laplace transformation,
Z(B) = [dEg(E)exp(—BE), and to derive the tempera-
ture dependence of important thermodynamic quantities.
The simulation data comprise M energy samples from
canonical simulations at inverse temperatures S, ..., By
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with sample sizes Ny, ..., Ny, respectively. The complete
data set is D ={(B, E Ey)i=1..M}. A
Bayesian approach to reconstruct the density of states
starts from a probabilistic model for the simulation data.
Assuming that the configurations have been simulated
correctly, the likelihood of generating a single energy E
at B is p(E|B) = g(E)e P£/Z(B). Assuming further that
the members of one energy sample are statistically inde-
pendent, the probability of the whole data set is p(D|g) =
[1:;P(E;jlB;). If constant terms are neglected, the like-
lihood of the data, viewed as a function of the density of
states, becomes

il o>

L(g) =

r[g(E,,) / [Tz@r. @

i=1j=

After pooling all data in one energy distribution H(E) =
> ;j8(E — E;;), the likelihood function can be written as

L(g) = exp{ f dEH(E)Ing(E) = YN, an(Bi)}. 3)

L(g) involves the cross entropy between the empirical
energy distribution and the density of states and a weighted
sum over the log-partition functions. Without this second
term, reconstruction of g would be a standard density
estimation problem for which H is the best estimate. The
second term effectively reweights this estimate: Z(3) mea-
sures the overlap between e A% and g(E) and becomes
minimal for g accumulating probability mass in high-
energy regions E > 1/ min{3,}. The maximum likelihood
estimate fulfills 5L(g)/8g(E) = 0 leading to

H(E)
SiNe PE/Z(B)

For discrete systems, H counts how often the different
energy levels were observed, in which case Eq. (4) is
identical to the histogram reweighting scheme of
Ferrenberg and Swendsen. For continuous systems, H is
a sum of delta peaks centered at the data, and therefore the
estimated density of states the weighted superposition of

g(E) = “)
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these peaks. This estimate suffers from overfitting because
it only places nonzero probability at exactly the observed
energies.

Overfitting will always be an issue for continuous sys-
tems because then one tries to estimate a density function,
i.e., an infinite dimensional object, from finite data. But
even for finite discrete systems, overfitting can arise if the
data are of poor quality or sparse. A way to alleviate over-
fitting is to control the complexity of g. In a Bayesian
framework, such a regularization is implemented via a
prior probability 7(g) encoding general knowledge about
g. Bayes’ theorem [5] yields the posterior probability

p(g) = L(g)m(g) (5)

defined on the space of all admissible densities of states. In
the nonparametric setting, one does not assume a specific
functional form but tries to determine g entirely from the
data. Alternatively, one could model g parametrically us-
ing a family of functions involving parameters 6. Then the
posterior distribution (5) is a probability density over the 6
parameter space. The prior probability can be chosen
freely, which may appear as a source of bias and prejudice.
However, the prior probability should be understood as a
representation of objective information on g including, for
example, properties such as smoothness, convexity, or
asymptotic behavior. Different prior assumptions can be
compared quantitatively using Bayesian model compari-
son techniques [5].

Let us illustrate nonparametric estimation of g for an
Ising model on a square lattice with L? spins and K =
L?> — 1 energy levels Ej, subject to periodic boundary
conditions [6]. For this finite system, a nonparametric
approach describing g as a K dimensional probability
vector does not seem problematic. The Dirichlet prior,
m(g) « ]_[kgzk_l, references g to some initial guess n of
the density of states via their cross entropy. Such a prior
guess could be obtained, for example, from a previous
simulation or from an approximate analytical result; the
least informative choice would be constant n.
Maximization of the posterior distribution (5) results in
the modified histogram equations:

_ Hk + I’lk - 1
Z?il N;exp{—B,E}/Z(B;)

The Dirichlet prior augments the histogram H; with
“pseudo counts’ n;. For the uninformative prior n;, = 1,
these equations are identical to those of Ferrenberg and
Swendsen.

The density of states for a system of size L = 8 was
reconstructed from 11 independent simulations at inverse
temperatures 8, = —1 +i/5, i =0,...,10. At each B,
10° configurations were generated by flipping randomly
selected spins; spin flips are accepted according to the
Metropolis criterion; out of all 10° configurations, only a
subset with autocorrelation less than 0.1 was kept. This
resulted in 5464 energy values in total; N, ranges from 100

8k (6)

to 2358. Figure 1 shows the true density of states g, [6],
the maximum posterior estimate gy,y.s based on an unin-
formative prior n; = 1, and the naive estimate obtained by
unweighted averaging: gu.ve(E) % 3 H;(E)ePE, where
H;(E) is the empirical energy distribution of the ith heat
bath. The Bayesian estimate is much closer to the exact
density of states than the naive estimate. Moreover, the
reconstructed energy distributions gpayes(E)e A€ match
the empirical distributions H;(E) very well.

When using an uninformative Dirichlet prior, maximi-
zation of the posterior probability [Eq. (5)] and histogram
reweighting lead to the same results. A truly Bayesian
analysis, however, does not rely on a single point estimate,
but also takes account of the uncertainty in g. This uncer-
tainty will lead to imprecisions in predicted quantities and
is reflected by the posterior distribution. To explore how
precisely g is defined by the data, one typically generates
statistical samples using Markov chain Monte Carlo meth-
ods [7,8]. Figure 2 shows a posterior sample generated with
the Hybrid Monte Carlo (HMC) algorithm [9]. The sample
scatters around the exact density of states; the variance is
mainly determined by the number of counts in each bin. It
is also possible to derive an approximate analytical expres-
sion for the uncertainty by Laplace approximation. The
inverse Hessian of — Inp(g) evaluated at the maximum
posterior estimate quantifies the (co)variances of the g;.
The estimate is most reliable for 8 = 0, which concurs
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FIG. 1 (color online). Upper left: Comparison of the true
density of states (dots), its Bayesian estimate obtained by pos-
terior maximization (solid line), and the naive estimate (dashed
line). Upper right: Deviation, In[g.q(E)/guwe(E)], between the
logarithms of the estimated and the exact density of states (solid
line: gyayes, dashed line: gp,,). Lower panel: Comparison of
empirical energy distributions H;(E) (dots) with reconstructions
based on g,y (solid line).
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FIG. 2 (color online). Uncertainty of the density of states. The
dashed line and the shaded range indicate the mean deviation
of the Monte Carlo sample from the true density of states and
its standard deviation, respectively. The solid line indicates the
uncertainty of the density estimate calculated from the
Monte Carlo sample. Inset: sampled g, shown as dots; the solid
line is the exact density of states.

with the fact that correct simulation is easiest in this
temperature range. By averaging over the sample, predic-
tive distributions of quantities such as specific heats can be
estimated (Fig. 3). As one would expect, the error is largest
in the critical region. But still the true curve is within 1
standard deviation.

Even for the finite Ising model, overfitting can occur.
The left panel of Fig. 4 illustrates the effect of missing
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FIG. 3 (color online). Predictive distributions for the specific
heat C(B) = 323’;; InZ(B). Ranges indicate 1 standard deviation
around the mean curve computed from the Monte Carlo sample.
The exact specific heat is shown as solid line. Inset: Deviation of
the reconstructed specific heat from the exact curve with mean
deviation shown as black line.

simulation data. The same data as in Figs. 1-3 were
analyzed, except that in the energy histogram, one bin
was set to zero. If one applies a Dirichlet prior or like-
wise histogram reweighting, the density of states drops
to zero at the corrupt bin and exhibits an infinite uncer-
tainty. This contradicts our intuition that g should be to
some extent smooth and results from the fact that the
Dirichlet prior does not capture correlations between
neighboring bins. The “‘roughness penality’ prior 7(g) o
exp{— [dEg(E)[dxIng(E)]*} encodes such a notion of
smoothness [10]. It penalizes densities with large varia-
tions in the first derivative, i.e., rough densities, but also
other forms of regularization could be applied here. The
right panel of Fig. 4 illustrates how the roughness penality
prior helps to bridge the gap having zero counts and
increases precision. This demonstrates that a suitable prior
can exploit the information content of the data more effi-
ciently by taking into account background information
such as smoothness.

A Bayesian analysis is particularly helpful in situations
where the nonparametric model runs into problems. With
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FIG. 4 (color online). Effect of a smoothing prior on corrupt
data. Shown is the deviation g, samples from the exact density of
states as in Fig. 2. Top: results for the uninformative Dirichlet
prior; bottom: results obtained for the smoothing prior.
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FIG. 5 (color online). Results for a finite mixture model using
15 Gaussian components. Top: exact density of states (solid
curve) and the reconstructed density of states (shaded range
indicating 1 standard deviation around the mean). The vertical
traces indicate the energy levels €. sampled in the Monte Carlo
run. Bottom: specific heat with local error (inset).

increasing system size, the number of parameters describ-
ing the density of states grows larger and larger, which
results in an unfavorable ratio between the number of
parameters and the number of data and increases the risk
of overfitting. But also practical considerations may play a
role if the size of the density of state becomes unwieldy.
For large or continuous systems, it is therefore common
practice to discretize the data and to apply the histogram
equations to the binned energies. However, such an artifi-
cial discretization can lead to systematic errors [11].
Another possibility would be to approximate H with
some continuous function such as a kernel density esti-
mate. In either case, one must choose parameters such as
the bin size of the histogram or the width of the kernel
function beforehand. A Bayesian analysis, on the other
hand, directly works with the raw data and does not require
the data to be represented by histograms or other density
estimates. All modeling assumptions only concern the
density of states—one does not need to hypothesize about

the functional form of the distribution of energies which is
not a truly physical quantity but depends on the simulation
algorithm.

An alternative to a nonparametric description of the
density of states is provided by a parametric model such
as a finite mixture of Gaussian distributions [12]:

C
g(E) = > w G(Ese, 0o). (7)
c=1

Here, C Gaussian components G(E; €., o,.) centered at
energy levels e, with variances o2 are used to model the
density of states; the weights 7r. live on a simplex:
Some. =17, €[0,1]. Now, 3C —1 parameters 6 =
{7, €., o .} must be estimated, and the posterior probabil-
ity becomes a density over the space of all §. Note that the
likelihood, Eq. (2), does not assume energies to be binned.
We can therefore estimate the density of states without
discretizing the energy samples.

Because of their reduced complexity, parametric con-
tinuous models usually require a smaller number of pa-
rameters when compared to their nonparametric counter-
parts. And even if the underlying system is discrete, a
continuous model may be the better choice. Figure 5 shows
results for the Ising data modeled with C = 15 Gaussian
components. Although the number of parameters (44) is
significantly smaller than for the histogram (62), the re-
constructed continuous model captures the most salient
features of the density of states equally well. The estimate
of the density of states and of the specific heat is equally
good as, if not better than, inferences based on a histogram.
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