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We suggest a way of rationalizing intraseasonal oscillations of Earth’s atmospheric flow as four
meteorologically relevant triads of interacting planetary waves, isolated from the system of all of the rest
of the planetary waves. Our model is independent of the topography (mountains, etc.) and gives a natural
explanation of intraseasonal oscillations in both the Northern and the Southern Hemispheres. Spherical
planetary waves are an example of a wave mesoscopic system obeying discrete resonances that also

appears in other areas of physics.
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Introduction.—The concept of mesoscopic systems
most often appears in condensed matter physics, e.g., in
studying properties of superconductors on a scale compa-
rable with that of the Cooper pairs [1], of miniaturized
transistors on a computer chip, of disordered (glassy,
granular) systems, when self-averaging is inefficient and
fluctuations or the system prehistory become important. A
similar situation also occurs in various natural phe-
nomena—from wave turbulent systems in the ocean [2]
and atmosphere, when wavelengths are compatible with
Earth’s radius [3], to medicine [4], and even in sociology
and economics, when the finite size of a system (popula-
tion, sociological group, market) becomes important [5].
Mesoscopic regimes are at the frontier between a detailed,
dynamical and a statistical, self-averaging description of
systems. An important observation for finite-size wave
systems was made in Ref. [6]: Spatial-time resonances
form small clusters of interacting modes (because of the
discreteness of eigenfrequencies of eigenmodes). These
clusters are autonomous; i.e., there is no energy exchange
between different clusters. The smallest clusters (with
three or four eigenmodes in different wave systems) in-
volve eigenmodes of scales A;, compatible with the global
scale L of the system itself. In studying concrete systems,
one sees [7,8] that, with decreasing of the ratio A j/L, the
number of modes involved in autonomous clusters in-
creases, and there exists a critical, relatively small value
Aj = A for which the number of modes involved in the
cluster goes to infinity. This critical cluster involves an
infinite number of very short waves, for which the reso-
nance discreetness is no longer relevant. Presumably,
waves with the wavelengths A < A, allow already ade-
quate statistical description, such as in the infinite media.

The mathematical problem of finding autonomous clus-
ters in concrete finite-size wave systems is equivalent to
solving some systems of high ( = 12) order Diophantine
equations on a space of 6—8 variables in big integers [7].
Recently developed algorithms for their analysis [8] allow
one to find, in particular, all resonance clusters of atmos-
pheric planetary waves, described by the spherical func-
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tions Y7, with eigenvalues [m| = € = 50. It turned out that
in this domain, consisting of 2500 spherical eigenmodes
Y7, there exist only 20 different clusters involving only
103 different modes. Moreover, 15 of these clusters have
the simplest “triad” structure, formed by three modes.
Importantly, there are only four isolated triads in the do-
main 0 < m, £ = 21, which is meteorologically significant
for the problem of climate variability on an intraseasonal
scale of about 10-100 days (waves with £ > 21 have too
short of a period to play a significant role in this problem).

The main physical message of our Letter is that so-called
intraseasonal oscillations (I0s) of Earth’s atmospheric flow
can be rationalized as periodical energy exchange within
the above mentioned four isolated triads of the planetary
waves. 10s were first detected [9] in the study of a time
series of tropical wind. Similar processes have also been
discovered in the atmospheric angular momentum, atmos-
pheric pressure, etc. A detailed analysis of the current state
of the problem is presented in Ref. [10] and references
therein; the majority of the papers are devoted to the detec-
tion of these processes in some data sets [11,12] and to the
reproducing them in computer simulations with compre-
hensive numerical models of the atmosphere [13].
Nevertheless, many aspects of the IOs remain unexplained:
e.g., the reason for IOs in the Northern Hemisphere is
supposed to be topography (see, e.g., [14]), no reason is
given for IOs in the Southern Hemisphere, there is no
known way to predict the appearance of 10s, etc.

Our model considers IOs as an intrinsic atmospheric
phenomenon, related to a system of resonantly interacting
triads of planetary waves, which is an example of a wave
mesoscopic system. The model is equally applied to the
Northern and the Southern Hemispheres, is independent (in
the leading order) of Earth’s topography, naturally has the
period of desired order, and allows one to interpret the
main observable features of 10s.

Atmospheric planetary waves.—These waves are classi-
cally studied in the frame of the barotropic vorticity equa-
tion on a sphere [3]:

AW/t + 204/IN + J(p, Ag) = 0. (1)
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Here ¢ is the dimensionless stream function; velocity v =
QR[z X V], with ) being the angular velocity of the
Earth and z the vertical unit vector; the variables ¢, ¢, and
A denote dimensionless time (in units of 1/€)), latitude
(—7/2 = ¢ = 7/2), and longitude (0 < A < 2m), re-
spectively; Ay and J(a, b) are spherical Laplacian and
Jacobian operators, respectively. The linear part of this
equation has solutions in the form A jYZj (A @)explio;t),

—2m;/€;(€; + 1). Integer parameters €; and ({; —
m;) = 0 are longitudinal and latitudinal wave numbers of j
mode; they are equal to the number of zeros of the spheri-
cal function along the longitude and latitude.

Assuming a small level of nonlinearity |A;| < 1, we
restrict ourselves by resonant interactions only. Under the
resonance conditions for three modes, w; + w, = w3,
m; + m, = ms, in which |€; — £,| < €5 <€, + {,, and
€, + €, + €3 is odd, the triad amplitude A;(7) varies in
time according to the following equations [3]:

NldAl/dt == 2ZN32A3A*, deAz/dt == 2ZN13ATA3,
NSdAS/dt = 2ZN21A1A2, for |AJ| < 1. (2)

Here N; = €;({; + 1), N;; = N; — N;, and interaction co-
efficient Z is an explicit function of wave numbers. This
system conserves energy E and enstrophy H:

E:E1+E2+E3, H:N]E1+N2E2+N3E3,

3

where the energy of the j mode is E; = N;|A;|*.

Classification of the triads.—Consider the structure and
properties of interacting resonant triads in the meteorologi-
cally significant domain 0 < m, £ = 21, where we found
four isolated triads, denoted as Ay, ..., Ay, three “butter-
flies,” i.e., clusters of two triads (denoted as > , <, , and
><i3 ) that are connected by a common mode, and one
cluster of 6 connected triads denoted as [X. The structure
of all isolated resonant triads and butterfly clusters is
shown in Fig. 1. The main information about the triads in
the chosen spectral domain is given in the four left columns
in Table I: the notations of the triads; three pairs of € jsm
for each triad; the value of the interaction coefficient Z; and
the so-called ‘‘interaction latitude” ¢, introduced in
Ref. [3]. Columns 5-7 contain data which are necessary
to compute the period of resonant interactions and will be
commented on further.

We can interpret the latitude ¢, as follows. The overlap
of three wave functions in a triad Z(A, go)?l‘ X
(A, QD)YZZ()\, go)YZf(A, ¢) shows a contribution to the in-
teraction coefficient Z = [ Z(A, ¢)dAd ¢ from a particular
location on the sphere. The overlap Z(A, ¢) has a maxi-
mum at a particular latitude ¢, and a narrow latitudinal
belt around ¢ gives the main contribution to the global
interaction amplitude Z. That is why ¢ can be understood
as the interaction latitude.
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FIG. 1 (color online). Four isolated triads are shown below the
diagonal dashed line: € along the horizontal axis and m <€
along the vertical one. The three clusters of two connected triads
are shown above the diagonal dashed line (now ¢ along the
vertical axis and m = € along the horizontal one). The (meteo-
rologically significant) spectral domain is restricted by 0 < m,
€ = 21. Localized modes are shown by solid circles, delocalized
ones (with a relatively small interaction amplitude) by empty
circles.

General solution of the triad equations.—Linear change
of variables B; = «a;A;, with «; being explicit functions on
N;, allows one to rewrite system (2) as B, = 2ZB}Bs,
B, = 2ZB}Bs, B; = 2ZB,B,. This system has two inde-
pendent conservation laws:

I} = |By* + |B3|* = (ENy — H)N»3/N\N,N3,  (4a)
= |Bl|2 + |B3|2 = (EN2 - H)Nl3/N1N2N3, (4b)

which are linear combinations of the energy E and ens-
trophy H. Direct calculations show that the general solu-

TABLE I. For each triad, the following data are given: all
resonantly interacting modes, interaction coefficient Z, interac-
tion latitude ¢, (in grad), magnitude of the elliptic integral
K(u), corresponding to the ECMWF December 1989 data for
a 500 hPa initial energy distribution in a triad, and initial
dimensionless energy E, X 10° of each triad and the resulting
T, values (in days).

Triad Modes [m, €] Z ¢y Klul 10°E, T,

Ay [4,12] [4,14] [9,13] 782 34 162 144 24
A, [3,14] [1,20] [4,15] 3746 19 1.14 5.4 5
As [6,18] [7,20] [13,9] 13.66 34 1.74 320 19
Ay [1,14] [11,21] [12,20] 47.67 28 1.21 058 13
D1y [2,6] [3.8] [5.7] 314 35 1.64 5.08 30

[2,6] [4,14] [6,9] 1463 37 1.61 0395 10
>,  [6,14] [2,20] [8,15] 69.25 31 1.13 0.61 8

[3.6] [6,14] [9.9] 1131 --- 117 0.360 13
>3 [3,10] [5,21] [8,14] 61.99 31 1.27 0133 7
[8,11] [5,21] [13,13] 871 --- 1.36 0.784 24
X [1,6] [2,14] [3.9] 2898 17 1.38 0247 6

[2,7] [11,20] [13,14] 277 42 1.08 1.78 26

[1,6] [11,20] [12,15] 15.08 29 1.06 0262 11
[9,14] [3,20] [12,15] 7493 50 1.36 0487 8
[3,9] [8,20] [11,14] 3212 40 1.11 0251 9
[2,14] [17,20] [19,19] 11.05 --- 1.05 333 24
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tion for B; is expressed in Jacobian elliptic functions B; =
BL()CH(T - ’To), Bz = BZ’()SH(T - 7'0), B3 = B3,0dn(7' -
7o), where B; and 7, are defined by the initial conditions
and 7 = t/2Z{/I|1,. Functions cn(7), sn(7), and dn(7) are
periodic with the period 4K(u), 4K(u), and 2K(u), cor-
respondingly, where

/2
k=2 [
7 Jo /1 — usin’f
Figure 2 illustrates the typical time dependence of all three
dimensionless amplitudes of the triad A;. One sees that
K(w) is a smooth function that changes slowly enough
such that, for the wide region of the initial conditions, it can
be roughly considered as a constant.

Period of triad oscillations.—The period of energy ex-
change (measured in days) in the triads is given by 7 =
7K (uw)/ZYTT,, which can be written as a product of
functions E and the ratio of the enstrophy to the energy
h/E:

I, I
w?=min]-t, 2l < 1.
LT

T = T(E, h) = To(E)K(n)f(h),

T N1N2N3
2Z\2E\|N2i /N3 Ny

78 = Nio/ 2 — W~ N, (50

(52)

Ty(E) =

(5b)

Here K depends on u and, in turn, & depends on & as

2y — o [(B = Np)Nps (Ny — h)N3,
i) = min] o |

Equation (3) shows that possible values of # lie inside one
of the two intervals Ny =h =N, or Ny =h=N,.
Without loss of generality, we set N, = h = N,, and then
the maximal possible value & = N, is realized if E| =
E; = 0; i.e., only the second mode is excited. The minimal
value i = N, is possible if £, = E; = 0; i.e., only the first

1/T, .

mode is excited. In both cases, according to basic equa-
tions (2) there is no time evolution; i.e., E; = const for j =
1,2, and 3. This is in agreement with Eq. (5c), according to
which f(h) — oo for h — N, or h — Nj.

Function f(h) [Eq. (5¢)] has a minimum (equal to one)
just in the middle of the interval N, = h = N; at h =
hy = (N, + N,)/2. For this value of A,

(N; = N3) (N3 —N))
(N3 — Ny)' (N, — Ny) [

p?(hs) = min

For the isolated triads of interest A, A,, Az, and Ay, the
values of w?(hy) are 0.93, 0.41, 0.97, and 0.45, respec-
tively, with K(u) equal to 1.96, 1.27, 2.22, and 1.30,
respectively.

The less trivial case of the infinite period corresponds to
pm = 1, which is realized at h = h;; + N, — N;. In this
case, B;(7) = tanh7 and, for 7 — o, B; — 1 and B, and
B, exponentially fast go to zero; i.e., for the specific value
h = hg;, the high mode B; exponentially fast takes energy
from two low modes. This is possible only for three par-
ticular values of h: h = Ny, N,, and N; + N, — N3. The h
dependence of the period of the triads A, ..., A, is pre-
sented in Fig. 2. One sees that the regions where the period
exceeds twice the minimal possible are very narrow, just a
few percent of the available interval of /. This means that,
though theoretically for each triad we can always choose
initial conditions in such a way that the period will be large
and even tend to infinity, the probability of this is very
small.

Indeed, for a qualitative analysis, we can think that in the
turbulent atmosphere the probability to get some energy
from global disturbances to a particular planetary wave is
independent from the state of other waves, and this proba-
bility is more or less the same for each wave in a triad. If so,
the probability P(h) to have initial conditions with some
value of & has to be a smooth function of / in the whole
available interval N, = h = N;. Roughly speaking, we

1/T,

2.84
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FIG. 2 (color online).

0 10 20 30 40

Left panel: Time dependence of A, A,, and A; [denoted by solid green, dashed red, and dotted-dashed blue

lines, respectively] of the triad A, with u = 0.89, corresponding to the observed data. Middle and right panels: Dependence of the
triad periods T(E, h)/T,(E) [Eq. (5a)]. Middle panel: The dashed blue line corresponds to the A, triad, the solid green line to the A,
triad. Right panel: Dashed red line—A,; solid magenta line—A, triad. The dashed black lines denote the minimal period: 7 = 1.3T

for A; and A; and T = 1.18T for A, and A,.
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can approximate P(h) as the constant: P(h) = 1/(N, —
N;), N, = h = N,. With this approximation, we can, for
example, for triads A;—A, estimate the probability to have
the period twice exceeding the minimal one Ty(E)
[Eq. (5b)] as a few percent. Moreover, as one sees in
Fig. 2, the typical value of the period T is about (1.4 *
0.1)T,, for the triads A and A5 and about (1.2 = 0.1)T} for
the triads A, and A,. This conclusion is in qualitative
agreement with the ECMWF (European Center for
Medium-Range Weather Forecast) winter data, shown in
Table I, column 7.

Intraseasonal oscillations as resonant triads.—Our in-
terpretation of IOs as dynamical behavior of A;, A,, Aj,
and A, triads allows one to answer some questions appear-
ing from meteorological observations [10].

What is the cause of 10s in the Southern Hemisphere? —
The basic fact of our model is the existence of global
nonlinear interactions among planetary waves, indepen-
dent of the topography.

Why is the period of so-called “topographic” oscillation
in the Northern Hemisphere given as 40 days by some
researchers and 20—-30 days by other researchers?—The
variations in the magnitudes of the period are caused by a
different initial energy and/or an initial energy distribution
among the modes of the same triad.

How do the tropical and midlatitude oscillations inter-
act?—Two mechanisms are possible: (i) Triads with sub-
stantially different interaction latitudes belonging to the
same group, for instance, triads [(1,6) (2,14) (3,9)] and
[(3,9) (8,20) (11,14)] of X exchange their energies through
other modes of this group and belong correspondingly to
the tropical and extratropical latitudinal belts, and
(ii) isolated triads can interact via some special modes
called active near-resonant modes [6]. These modes have
the smallest resonance width with a given triad and are
themselves parts of some other resonant triad. For instance,
the mode (13,19) is near-resonant for A, (with resonance
discrepancy 6 = 0.16) and is resonant for As;.

Why are the intraseasonal oscillations better observable
in winter data?—In summer, modes have higher energies,
periods of the triads become smaller, and resonances with a
big enough resonance width can destroy the clusters.

How to predict these recurrent features?—Amplitudes
of the spherical harmonics with wave numbers taken from

Table I have to be correlated: (A;(1)A,(r)A5(t)) ~

VA (OPXIA (0PI A3(0]7); see Fig. 2. Magnitudes of
the expected periods can be computed beforehand by the
given explicit formulas.

Conclusions.—Our simple model provides the main
robust features of 10s in terms of resonance clusters con-
sisting of three modes of atmospheric waves.

Energy behavior within the bigger clusters should be a
subject of a special detailed study. Knowledge of cluster
structure allows one to simplify drastically their analysis.
For instance, for a “butterfly” cluster, at least 6 real in-
tegrals of motion can be easily found. A universal method

to construct isolated clusters and write out explicitly cor-
responding dynamical equations for a wide class of meso-
scopic systems is given in Ref. [15].

Our approach is quite general and can be used for study-
ing many other mesoscopic systems, provided that the
explicit form of dispersion function w(k) is known (here
k is the wave vector of plane systems with periodical
boundary conditions or another set of eigenvalues in
more complicated cases, such as m, { for the sphere).
The properties of a specific mesoscopic system will depend
on (i) the form of w(k), (i) the dimension of k, (iii) the
number of conservation laws, and (iv) the initial magni-
tudes of the conserved values (energy, enstrophy, etc.) and
their initial distribution among the modes in the cluster.
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