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The crystallography of two-dimensional particle packings on flexible surfaces of spherical topology is
investigated. Examples are viral capsids and crystalline vesicles. Computer simulations of dynamically
triangulated surfaces are employed to study the shape and structure of lattice defects as a function of the
Föppl–von Kármán number �. We find that grain-boundary scars become much more fuzzy with
increasing temperature, that the size of grain-boundary scars saturates with increasing vesicle radius,
and that the buckling transition shifts to higher values of � due to the presence of scars.

DOI: 10.1103/PhysRevLett.98.198101 PACS numbers: 87.16.Dg, 81.16.Dn, 61.72.Bb

Self-assembled crystalline membrane structures have
been observed in systems as diverse as mixtures of anionic
and cationic surfactants forming vesicles [1], proteins in
viral capsids [2–6], and clathrin-coated pits at the plasma
membrane of cells [7,8]. However, long-range crystalline
order and nonzero Gaussian curvature are incompatible. A
perfect two-dimensional crystal thus cannot exist, for ex-
ample, on the surface of a sphere. The question is then how
the crystal adapts to a curved space. For two-dimensional
crystals with preferred sixfold coordination on a surface of
spherical topology, Euler’s formula indicates that there
must be topological lattice defects; in the simplest case
12 fivefold disclinations. However, this does not have to be
the defect configuration of minimal stretching energy.
Instead, dislocations (pairs of five- and sevenfold disclina-
tions) can be generated to screen the long-range strain field
around the 12 topological disclinations. Indeed, it was
shown recently [9–12] that the lowest-energy state of a
crystal on a sphere is a configuration, in which each
topological fivefold disclination is accompanied by a line
of dislocations, a grain boundary of finite length, which
scales linearly with the sphere radius [11,12]. These ‘‘de-
fect scars’’ have already been observed in colloidal crystals
on the surface of spherical emulsion droplets [13–15].

However, in many cases, a crystal is not forced to be on
the surface of a sphere, but can adjust its shape, for
example, in viral capsids [2,4,6] and surfactant vesicles
[1]. Therefore, we investigate in this letter the defect
patterns, which form due to the competition of curvature
elasticity and crystalline order on flexible vesicles of
spherical topology. Furthermore, we take into account
thermal fluctuations. Spherical vesicle shapes are recov-
ered in the limit of large bending rigidity �. In the opposite
limit, where the dimensionless Föppl–von Kármán num-
ber � � K0R

2=�—with the two-dimensional Young
modulus K0 and vesicle radius R—is large, it has been
shown that a lattice with exactly 12 fivefold disclinations
approaches an icosahedral shape, in which bending and
stretching energy is localized in ‘‘stretching ridges’’ con-
necting the disclinations [16]. What happens to the grain-
boundary scars in the large-� limit? What is the effect of

thermal fluctuations on the size and shape of grain-
boundary scars? We show by computer simulations of
crystalline membranes that for any given elastic parame-
ters, the scar length saturates with increasing vesicle ra-
dius. Furthermore, while the scar shape at finite tem-
perature T deviates strongly from the linear T � 0 shape,
its size remains essentially unaffected.

We employ a dynamically triangulated surface model of
flexible membranes [17,18]. The vesicle is modeled by a
triangular network of spherical topology, with a curvature
energy Eb given by the discretized Laplacian [17]. Bonds
connecting neighboring vertices represent a tethering po-
tential, which prevents bonds from exceeding the maxi-
mum tether length ‘0 and vanishes otherwise. In addition,
all vertices have hard-sphere interactions with sphere di-
ameter �0. Monte Carlo simulations of this model consist
of vertex moves and bond-flips between two adjacent
triangles. For flat membranes, a crystalline phase exists
for small bond lengths ‘0 [19]. In this phase, bond flips
allow the formation, migration, and annihilation of crystal
defects in thermal equilibrium. After equilibration, aver-
ages are typically calculated over 10 to 100� 106

Monte Carlo steps (MCS) per vertex.
The Young modulus K0 is a monotonically decreasing

function of the tether length ‘0. All results presented here
were obtained for tether length ‘0=�0 � 1:45, for which
the two-dimensional Young modulus has been estimated in
Ref. [20] to be K0a

2=kBT ’ 78, where a ’ ��0 � ‘0�=2 is
the average bond length. This value of the Young modulus
indicates that our system is not close, but also not too far
from the transition to the hexatic phase of a flat membrane,
which occurs at K0a2=kBT � 16� � 50:26 [21] corre-
sponding to a tether length of ‘0=�0 ’ 1:480 [19]. In
thermally undulating membranes of sufficiently large
size, the crystalline phase is unstable and is replaced by
the hexatic phase [22,23].

Two typical configurations of vesicles of different size
are shown in Fig. 1. This demonstrates the three main re-
sults of our simulations, which we will discuss in more de-
tail below: (i) grain-boundary scars exist for all vesicle ra-
dii R, but are much more fuzzy than at T � 0, (ii) vesicles
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become more faceted with increasing R, as they do in the
absence of lattice defects, and (iii) the size of grain-
boundary scars relative to the vesicle radius decreases
with increasing R.

The dependence of the average size of grain-boundary
scars as a function of the vesicle radius is shown in Fig. 2
for three bending rigidities. Since the scars are not simply
lines of neighboring disclinations, we define the scar size
globally as the number L � hN5 � N7 � 12i=24, whereN5

and N7 are the total number of five- and sevenfold discli-
nations, respectively. Thus, L is the average number of
excess dislocations in each scar. Figure 2 shows that for
very small radii R=a < 2:5, the number of dislocations is
extremely small. For R=a > 2:5, but when the vesicle
shape is still essentially spherical, the scar size is found
to increase linearly with R. The slope of this line agrees
very well with the theoretical prediction [11] of ��=3��
�
������
11
p

� 5cos�1�5=6���R=a� ’ 0:41�R=a� for T � 0, as
well as with experimental observations for colloidal crys-
tals at the surface of (spherical) emulsion droplets [13]. For
larger radii, the scar length saturates. The critical radius Rc
where this happens, increases with increasing bending
rigidity.

A better understanding of the different regimes and the
crossover between them can be obtained by considering the
bending and stretching contributions in the elastic energy.
For small Föppl–von Kármán numbers � � K0R

2=�, the
vesicles are spherical and can reduce their energy by grain-
boundary scars [11]. For vesicles without defects (except
for the 12 ‘‘topological’’ disclinations), the icosahedral
shape begins to emerge for � > �b ’ 150. In the regime
150< �< 104, the elastic energy can be approximated
very well by assuming a superposition of 12 cylindrical
cones with a flat inner region near the tip [2]. The size of
the flat region is determined by the buckling radius Rb ’
�150�=K0�

1=2. We can modify this estimate slightly by
assuming that the inner region is not flat, but a spherical
cap with a radius of curvature proportional to Rb—con-
sistent with the vesicle shapes obtained from energy mini-
mization in Ref. [2]. This does not change the functional
dependence of the inner region, which still scales as K0R

2
b

[11]. If the vesicle shape is not strongly affected by the
scars, then this picture implies that the scars grow linearly
with the vesicle radius for � < �b, but are then restricted to
the spherical-cap regions near the corners of the icosahe-
dron, since in the faceted regions of nearly vanishing
Gaussian curvature the energy cannot be reduced by the
presence of scars. Thus, the scar size for R> Rb should be
approximately the same as for R � Rb.

This argument implies that the scaled scar size
L=�R=a� 2:5� should be a universal function of R=Rb,
where R is the average vesicle radius, or equivalently of �.
Indeed, we find that the curves for the three values of the
bending rigidity in Fig. 2 all collapse onto a single master
curve when plotted in this way; see Fig. 3. For R larger than
the buckling radius, the scar length saturates, which im-
plies that L=�R=a� 2:5� decays as R�1 or ��1=2. The
crossover between the two regimes occurs at � ’ 350,
which is about twice as large as �b. The reason is that
the simple scaling picture developed above ignores two
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FIG. 2 (color online). Scar size L, defined by the average
number of excess dislocations per topological disclination, as a
function of the vesicle radius for various bending rigidities, as
indicated.

 

(a)

(b)

FIG. 1 (color online). Snapshots of vesicle shapes and defect
configurations for bending rigidity �=kBT � 100 and system
size N, with (a) N � 2562 (after 109� 106 MCS), and
(b) N � 10 242 (after 18� 106 MCS). Five- and sevenfold
coordinated vertices are shown by (green) squares and (blue)
dots, respectively.
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effects: (i) the change of the energy of the spherical caps
due to the presence of the scars, and (ii) the thermal
fluctuations of the vesicle shape. The effect of the scars
can be calculated, following Ref. [2], by considering the
vesicle as being composed of 12 buckled disclinations with
a spherical tip. This implies the elastic energy

 E � 4�� ln�R=Rb� � cn
�
36
K0R

2
b; (1)

where cn is a constant for scars containing n dislocations,
which has been calculated in Ref. [11]. By minimizing
Eq. (1) with respect to Rb, we find

 �b�n� 	
K0Rb�n�2

�
�

72

cn
: (2)

With c0 � 0:60, c1 � 0:44, c2 � 0:37, and c4 � 0:32 [11],
Eq. (2) indicates that for scars of moderate length, the
buckling threshold increases to a value about twice as large
as for vesicles without scars. This explains the behavior
observed in the simulations for large �. For �=kBT � 10,
we believe that thermal shape fluctuations play an impor-
tant role. In this case, out-of-plane membrane fluctuations
and grain-boundary scars compete to screen the long-range
strain field of fivefold disclinations.

Figure 4 shows the mean squared asphericity, A 	
h�R2i=hRi2 � 1

N

P
ih�Ri � hRi�

2i=hRi2, as a function of
the Föppl–von Kármán number. The three curves for
different � converge to the same value A ’ 0:0017 after
the shape transition from spherical to icosahedral shell,
where the transition occurs around �
 ’ 1000. This value
of A is in reasonable agreement with the value Aico �
0:0021 of a perfect icosahedron. For � < �
, the vesicles
should behave essentially like spherical fluid membranes,
so that the amplitude of the fluctuation can be estimated to
be h�R2i=hRi2 � �kBT=��

P
l�2�2l� 1�=�4�l�l� 1��

�l� 1��l� 2�� � kBT=�12���, in good agreement with

the numerical results of Fig. 4. Thus, for small bending
rigidities, increasing vesicle size strongly reduces the as-
phericity due to a reduction of thermal fluctuations.

In order to investigate the structure and fluctuations of
defect scars in more detail, we now define defect clusters as
all disclination sites, which have a maximum distance of
three lattice constants between neighboring defects. The
size n of a cluster is its number of defect sites. The results
are shown in Fig. 5 for clusters of odd and even sizes—
where odd sizes correspond to scars, with one topological
disclination and several dislocations. This allows several
conclusions. First, the distribution of clusters of odd sizes
has a broad peak for �=kBT � 100 (and sufficiently large
N so that scars are well developed). The fluctuations of the
cluster size are very pronounced, since the width of the
distribution is approximately equal to the peak position. On
the other hand, only very small clusters of even sizes
appear, which correspond to single dislocations and bound

 

0

0.001

0.002

0.003

0.004

0.005

0.006

10 100 1000 10 000 100 000

〈∆
R

2 〉/R
2

K0 R2/κ

κ=10

κ=25

κ=100

FIG. 4 (color online). Mean squared asphericity, A �
h�R2i=hRi2, as a function of the Föppl–von Kármán number
�, for various bending rigidities � as indicated.
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FIG. 5 (color online). Distribution of scars sizes with an odd
number of defects for �=kBT � 100, and various system sizes as
indicated. The insets show the distributions of defect clusters
with an even number of defects.
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FIG. 3 (color online). Scaled scar size, L=�R=a� 2:5�, as a
function of the Föppl–von Kármán number � � K0R

2=�, for
various bending rigidities as indicated. The inset shows the
scaled average size, hnoddi=�R=a� 2:5�, of defect clusters with
an odd number of defects as a function of �.
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dislocations pairs. Second, the average size of ‘‘odd’’
clusters, a measure of the scar length, is shown as an inset
in Fig. 3; it follows essentially the same scaling function as
the number L of excess dislocations. This demonstrates
that ‘‘isolated’’ dislocations play a minor role, since they
are taken into account in L, but not in the defect clusters.
Third, the number of clusters of size n � 4 increases with
increasing vesicle radius for all investigated �-values. This
happens because dislocation pairs are excited thermally, so
that their number should increase proportional to the mem-
brane area.

Scars are not straight defect lines at finite temperatures,
as can be seen very clearly in the configurations of Fig. 1.
We therefore characterize their shape by the eigenvalues
R2

1 and R2
2, with R1 � R2, of the gyration tensor G�� �

P
ir
�i�
� r
�i�
� , where r�i� is the position of disclination i in the

scar. The results shown in Fig. 6 indicate that the scars
(i) have large thermal fluctuations, and thusR2=R1 does not
show a simple scaling law as a function of �, and
(ii) become less elongated with increasing vesicle radius R.

In comparison, the experiments for colloidal crystals on
emulsion droplets in Ref. [14] were performed at a Young
modulus of K0a

2=kBT � 167, i.e., much further away
from the crystalline-to-hexatic transition. Therefore, scars
are less fuzzy and more elongated.

Viral capsids self-assemble from protein subunits [3],
and therefore have the possibility to form scars. We predict
that this requires R=a > 2:5 (i.e., N � 90), and Rb=a � 1
(i.e., K0a2=� � 150). Thus, the icosahedral viruses HK97,
yeast L-A [2] and Cowpea chlorotic mottle virus (CCMV)
[24] (for which elastic coefficients have been determined)
are all too small in size to show scars. With K0=� ’
1:5 nm�2 [2] and a ’ 10 nm, their elasticity is at the
borderline of scar formation. If all viruses have similar
elastic coefficients, as speculated in Ref. [2], this would
explain why scars have not been observed on viruses so far.

Stimulating discussions with A. R. Bausch (TU
München), D. M. Kroll (NDSU), and D. R. Nelson
(Harvard) are gratefully acknowledged.

*Electronic address: g.gompper@fz-juelich.de
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FIG. 6 (color online). Sphericity R2=R1 (see text) of scars with
more than three defects as a function of the sphere radius, for
�=kBT � 10, �=kBT � 25, and �=kBT � 100.
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