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We show that Landau theory for the isotropic (I), nematic (N), smectic-A, and smectic-C phases
generically, but not ubiquitously, implies ‘‘de Vries’’ behavior: i.e., a continuous A-C transition can occur
with little layer contraction while the birefringence increases significantly once the system moves into the
C phase. Our theory shows that 1st order A-C transitions are also possible. These transitions can be de
Vries-like, but in general need not be. Generally, de Vries behavior occurs in models with unusually small
orientational order and is preceded by a first order I-A transition. These results correspond well with
experimental work to date.
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Recently, an unusual new class of liquid crystals known
as ‘‘de Vries smectic liquid crystals’’ [1] has drawn inter-
est. They possess two defining features. First, there is little
change with temperature T of the layer spacing d�T� upon
entry to the C phase, in contrast to the rapid geometrical
contraction d�T� / cos��T� expected if the molecules tilt
by a strongly temperature dependent angle ��T�. Second,
the birefringence increases significantly upon entering the
C phase from the A phase. In fact, for de Vries materials
with a 2nd order A-C transition, the birefringence is seen
[2,3] to decrease with decreasing temperature as the A-C
transition as approached, reaching a minimum at the A-C
transition. This is the first example known to us of decreas-
ing order as a lower symmetry phase is approached. For de
Vries materials with a 1st order transition, the birefrin-
gence increases moderately as the A-C transition is ap-
proached and then jumps significantly at the transition [4].
Generally, de Vries smectic liquid crystals exhibit the
phase sequence I-A-C, without a nematic phase. First order
A-C transitions are not always de Vries-like [4], contrary to
some recent speculations.

In de Vries’ ‘‘diffuse cone model’’ [5] of these materials,
the molecules ‘‘pretilt’’ in the A phase as the A-C transition
is approached, but in azimuthally random directions (hence
reducing orientational order), so that there is no long range
order in the tilting. Upon entering the C phase, the mole-
cules azimuthally order (hence increasing orientational
order) without the significant layer contraction that occurs
in conventional smectics whose molecules tilt at the A-C
transition.

In this Letter, we show that in a complete, nonchiral
Landau mean field theory for the isotropic (I), nematic (N),
A and C phases, in which all three order parameters (ori-
entational, layering, azimuthal tilt) and the layer spacing
are coupled, de Vries behavior occurs in a finite fraction of
parameter space, while other regions exhibit conventional
behavior. The mean field phase diagram for our model is
shown in Fig. 1. Here, ts and tn are Landau theory parame-
ters that control layering and orientational order, respec-

tively. We find that two main features are necessary for de
Vries behavior— an unusually weak coupling between
layering and orientational order and a virtually temperature
independent tn. This latter feature would correspond to
almost perfect excluded volume short range repulsive mo-
lecular interactions. Our theory also predicts that materials
exhibiting de Vries behavior will almost always follow the
phase sequence I-A-C. For 2nd order A-C transitions, we
show that systems with an athermal tn will exhibit the
unusual feature of a decreasing birefringence as the tran-
sition is approached from the A phase. In fact, we predict

 

FIG. 1. The phase diagram in ts-tn space for the I, N, A, and C
phases. 1st and 2nd order phase boundaries are shown as dashed
and solid lines, respectively. Three decreasing temperature paths
from the I to C phase are shown. Path (i) corresponds to a
conventional material that does not exhibit de Vries behavior.
Path (ii) corresponds to a material exhibiting de Vries behavior
and a 2nd order A-C transition. Path (iii) leads to a 1st order A-C
transition with de Vries behavior. The inset shows a possible
temperature dependence of birefringence (M) and layer spacing
(d) for path (ii).
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that in the A phase, some systems will exhibit a birefrin-
gence that has a nonmonotonic dependence on tempera-
ture, as shown in the inset of Fig. 1 [6]. Lastly, we also
show that 1st order A-C transitions can (but generally need
not) be de Vries-like.

Another result of our theory, unrelated to de Vries
behavior, is that this phase diagram predicts two distinct
smectic-A phases of identical symmetry, denoted A and A0,
separated by a first order phase transition. While 1st order
transitions between two smectic-A phases due to competi-
tion between two different layer spacings [7] have been
predicted, our result shows that even without such compe-
tition, A-A transitions occur quite naturally and should be
far more common than was previously thought.

Any experiment in which temperature is varied at fixed
concentration traces a path through this phase diagram. As
usual in Landau theory, we assume throughout this Letter
that ts and tn are monotonically increasing functions of
temperature; hence, as temperature is lowered, one moves
monotonically from upper right to lower left in Fig. 1.
Three qualitatively distinct paths of this type are shown.
Path (i) is a typical path for a material that does not display
de Vries behavior; along it, ts and tn both depend strongly
on temperature. Paths (ii) and (iii) correspond to de Vries
behavior with 2nd and 1st order A-C and A0-C transitions,
respectively. Both paths have strongly varying ts and
weakly varying tn; i.e, tn is virtually athermal. This would
be the case if the I-N transition is driven by a steric
mechanism for which tn depends strongly on concentration
and weakly on T. We find that de Vries behavior occurs in
this case, for sufficiently weak coupling between layering
and orientational orders. It should also be pointed out that a
path above (iii), away from the A-A0-C critical end point
(CEP), would exhibit a 1st order A0-C transition without de
Vries behavior.

This restriction to nearly horizontal paths implies that de
Vries systems should very rarely exhibit an N phase be-
tween the A and C phases, since to cross the I-N boundary,
a nearly horizontal path in Fig. 1 would have to be ‘‘fine
tuned’’ to start very close to the boundary. The most likely
paths to see de Vries behavior are those like (ii) or (iii),
showing phase sequence I-A-C or I-A0-C, in good agree-
ment with experimental work to date.

In this Letter, we focus on path (ii) and briefly discuss
path (iii) at the end. The inset in Fig. 1 shows predictions
for the layer spacing d�T� and birefringence M�T� as T is
varied along path (ii). The increase of the layer spacing in
the A phase as the A-C transition is approached, though
contrary to the de Vries picture of ‘‘pre- tilting’’ in the A
phase, is seen experimentally [2]. In the A-phase, our
Landau theory predicts

 MA�T� � Mmax �M2

�
ts�T� � ts�Tmax�

ts�Tmax�

�
2
; (1)

where Mmax ,M2, and Tmax are positive constants. We have
shown that if tn is completely athermal, TAC < Tmax, where

TAC is the A-C transition temperature, so that in systems
that follow a path like (ii), MA�T� will decrease as the A-C
transition is approached. A subset of such systems will
have Tmax < TIA, where TIA is the I-A transition tempera-
ture, so that MA has a maximum within the A phase, as
shown in the inset in Fig. 1. If ts is linear in T in the
A-phase (as expected for small TIA � TAC), then MA�T�
will be perfectly parabolic in T.

In the C phase near the A-C transition, the critical
temperature dependences of M and the tilt angle ��T�
predicted by our Landau theory are as follows: M linear
in T, and � / �TAC � T�1=2. When fluctuation effects are
included, we expect [8] � / �TAC � T��, where � � 0:35
is the order parameter critical exponent for the 3D XY
model. The layer spacing scales with temperature in our
Landau theory according to

 d � d0 � a�TAC � T� � b�TAC � T�
3; (2)

where d0 is the value of the layer spacing at the A-C
transition and a and b are constants that depend on the
Landau theory parameters . Clearly, if a is sufficiently
small, which we find is the case in the C phase for suffi-
ciently weak coupling between layering and orientational
order, the layer spacing shows very little variation with
temperature near TAC. Significantly, we find that in cases
like path (ii), the criterion for de Vries behavior of d�T�
differs from that for M�T�. Hence, we predict that some
systems will exhibit de Vries behavior of the birefringence,
but not de Vries behavior of the layer spacing.

How do fluctuations affect our mean field Landau the-
ory? While our theory predicts that the I-A0 transition is
continuous, it is known [9] that fluctuations always drive
the I-A0 transition first order, albeit only weakly so if
fluctuations are small. Fluctuation effects will also shift
the positions of all of the transitions we have found. We
expect, however, that the topology and essential geometry
of the phase diagram Fig. 1 should occur in real systems.
The only qualitative difference we expect is that the I-A-A0

critical end point (CEP) predicted by Landau theory will be
replaced by an I-A-A0 triple point.

In other regions of parameter space, our model has an
N-A-C point; we will discuss this elsewhere [10].

In summary, de Vries behavior emerges quite naturally
from our Landau theory. Equally importantly, conventional
behavior (for both 1st and 2nd order transitions) also
generically occurs for different Landau parameters. Thus,
the model can accommodate all observed behaviors in all
systems, and also predicts new behaviors not yet seen
experimentally, like the first order A-A0 transition.

We will now briefly describe the formulation and analy-
sis of our theory. A Landau theory for all four phases (I, N,
A, C) must include order parameters for three types of
order: uniaxial orientational order, tilt (azimuthal) order,
and layering order. The first two are embodied in the usual
second rank tensor orientational order parameter Q. The
complex layering order parameter  is defined via the
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density � � �0 � Re� eiq�r� with �0 constant and q the
layering wave vector. Taking both  and Q to be spatially
uniform implies the Landau free energy density f � fQ �
f � fc, with the orientational (fQ) [11], layering (f ),
and coupling (fc) terms given by

 fQ �
tnTr�Q2�

12
�
wTr�Q3�

18
�
un�Tr�Q2�	2

144
; (3)

 f� �
1

2
tsj�j

2 �
1

4
usj�j

4 �
1

2
K�q2 � q2

0�
2j�j2; (4)

 

fc �
1

2
��g1�q

2�qiqjQij � g2qiqjQikQjk	j�j
2

�
h
4
�qiqjQij�

2j�j4; (5)

where qi is the component of the layering wave vector in
the ith direction, and the Einstein summation convention is
implied. The constant q0 is the magnitude that the layering
wave vector would have in the absence of coupling be-
tween layering and orientational order. For weak coupling,
q � q0, and we Taylor expand g1�q2� � g10

� g01�q
2 �

q2
0�, where g10


 g1�q2
0� and g01 


dg1

d�q2�
jq2�q2

0
. The rela-

tively large number of parameters in f is inevitable given
the fact that the theory incorporates three types of order.
Furthermore, this theory allows for the possibility of con-
ventional or de Vries behavior. However, we will show that
in general, any of the five possible phases shown in Fig. 1
can be accessed by allowing, at most, two of the above
parameters (tn and ts) to vary (with temperature). The
presence or absence of the two defining features of de
Vries behavior, small change in layer spacing and decreas-
ing birefringence, depend only on the size of g01 and the
athermal nature of tn, respectively. The remaining fixed
positive parameters are required to stabilize the phases
[12–14].

Choosing the arbitrary direction of the layer normals to
be z, we seek the configuration of  , Q, and q � qẑ that
minimizes f. The form of Q that does so [10] is given by

 Qij � ��S�
���
3
p
��e1ie1j � ��S�

���
3
p
��e2ie2j

� �2S�e3ie3j; (6)

where ê3 � c�
��������������
1� c2
p

ẑ is the average direction of the
molecules’ long axes (i.e., the director). Here, in either
smectic phase, ẑ is normal to the layers; in the N and I
phases, the direction of ẑ is arbitrary. The projection, c, of
the director onto the layers is the order parameter for the C
phase. The other two principal axes of Q are given by ê1 �

ẑ� ĉ and ê2 �
��������������
1� c2
p

ĉ� cẑ. S and � are proportional
to the birefringence and biaxiality of the system, respec-
tively. The A phase is untilted (c � 0) and uniaxial (� �
0), while the C phase is tilted (c � 0) and biaxial (� � 0).
It is convenient to make the change of variables S �
M cos��� and � � M sin���. In the A phase, M is propor-
tional to the birefringence.

We next minimize the free energy f over the variables
M, �, c, j�j, and q. Four qualitatively different types of
minima are possible, corresponding to the four different
symmetry phases (I, N, A, C). Specifically, the I phase has
M � 0; � � 0; theN phase has � � 0, c � 0, and � � 0,
but M � 0; the A phase has � � 0 and M � 0, but c � 0
and� � 0; and the C phase has all of the variablesM,�, c,
and � � 0. We render minimization analytically tractable
by assuming that the coupling term Eq. (5) is small and by
treating it perturbatively. Standard phase transition analy-
sis [15] leads to the phase diagram shown in Fig. 1.
Equations for the loci of the phase boundaries are given
in [16]. The minimization of our Landau free energy also
leads to predictions for the temperature dependences of M
and q. We find, in the A-phase,

 MA � M0�tn� �
q2

0�2
0

�
��3g2M0�tn� � �	; (7)

 q2
A � q2

0 �
M0�tn�
K
��g2M0�tn� � g01q

2
0 � �	; (8)

where � 
 wM0�tn� � 2tn > 0 and M0�tn� � �w�������������������������
w2 � 4untn

p
�=2un is the ‘‘bare’’ value of M, i.e., its value

in the absence of coupling. Likewise, �0 �
���������������
�ts=us

p
is the

bare value of �. For strongly T dependent ts and athermal
tn, the quantity � is most usefully expressed as

 ��ts; tn� 
 ��ts � t
AC
s �; (9)

where � � �2hq2
0M0�=us, and tACs � ��g10

� g2M0�=� is
the value of ts where � vanishes and the 2nd order A-C
transition occurs. In the A phase, � > 0 and in the C phase
� < 0. In the C phase, we find

 MC � M0�tn� �
q2

0�2
0

�

�
�3g2M0�tn� �

g2

2hq2
0�2

0

�
�
; (10)

 q2
C � q2

A�t
AC
s � �

g01
2Kh�2

0

�; (11)

where a decrease in layer spacing requires g01 < 0. Finally,
in the A0-phase, we find

 M0A �
q2

0�2
0g10

tn
; (12)

 q02A � q2
0

�
1�

2g2
10

�2
0

Ktn

�
: (13)

These results imply de Vries behavior for both birefrin-
gence and layer spacing. For a nearly horizontal experi-
mental locus like path (ii) through the A phase, the T
dependence of M (and hence birefringence) in Eq. (7)
comes from the linear ts- dependence of each of �2

0 and
� in the correction due to the coupling of layering and
orientational orders. From Eq. (7), we see that nonmono-
tonicity ofMA is due to a competition between the layering
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order, �2
0 and the coupling � which increase and decrease,

respectively, as the A-C transition is approached. This
happens because, as the system moves deeper into the A
phase, the layering order increases, thereby augmenting the
weak orientational order due to the coupling between the
two. However, as the A-C transition (where at the director
tilts away from the layer normal) is approached, this cou-
pling necessarily decreases and, hence, so does MA, which
means the birefringence decreases as the A-C transition is
approached. Once in the C phase, the birefringence begins
to increase with decreasing ts. It is straightforward to show
that if g10

> 4g2M0, then MA exhibits a maximum inside
the A phase, as shown in the inset in Fig. 1.

As the A-C transition is approached within the A phase,
qA monotonically decreases and hence d monotonically
increases. This is typical of both conventional and de Vries
smectics although, as discussed above, it is somewhat
contrary to the diffuse cone picture. The T dependence of
the layer spacing at the transition depends crucially on the
size of the parameter g01. In systems where the coupling
of the layering and orientational order depends weakly
on layer spacing and jg01j is unusually small, the
T-dependence of q is almost flat. We have shown that if
g01 � 0, then the change in layer spacing scales like �TAC �
T�3 and hence varies very weakly in the C phase near the
A-C transition. Systems with larger values of jg01j will have
conventional behavior of the layer spacing.

Since this de Vries behavior of q has a different criterion
than the de Vries behavior of M (which relies on tn being
athermal), it should be possible to find systems which
exhibit de Vries behavior of the birefringence, but not de
Vries behavior of the layer spacing.

For systems that approach the C phase from the A0

phase, along path (iii), the birefringence will increase
monotonically before jumping substantially (on the order
of M0) at the transition. From Eq. (13), we see that the T
dependent piece of q0A is second order in the coupling g10

which we treat perturbatively in our analysis. Thus, this T
dependent piece is very small in the A phase. Upon entry
into the C phase, the T dependence of the layering spacing
will be weak if g01 is small. At the A0-C transition, there will
be a jump in q but Eqs. (8), (11), and (13) can be used to
show that this jump will be small when g01 and g2 are small.
For such a system, a transition just above the CEP will
exhibit an almost continuous change in tilt angle, a weakly
varying layer spacing, a substantial jump in birefringence,
and a latent heat. Systems entering the C phase well above
this CEP will exhibit jumps in all of the above quantities
and thus not be de Vries-like.

The requirement of near T-independence of tn for de
Vries behavior severely restricts the possible experimental
loci in Fig. 1 that can display such behavior: namely, nearly
horizontal ones. A significantly sloped path like (i) will not
exhibit de Vries behavior. In this case, the growth of the
bare (i.e., coupling-free) birefringence M0�tn� as T is low-
ered swamps the effects due to the coupling terms, and

makes the behavior of both the birefringence and the layer
spacing conventional. Thus, our model can accommodate
either conventional behavior or de Vries behavior, if tn is
thermal or athermal, respectively.
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