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We investigate the spin Hall effect in ballistic chaotic quantum dots with spin-orbit coupling. We show
that a longitudinal charge current can generate a pure transverse spin current. While this transverse spin
current is generically nonzero for a fixed sample, we show that when the spin-orbit coupling time is short
compared to the mean dwell time inside the dot, it fluctuates universally from sample to sample or upon
variation of the chemical potential with a vanishing average.
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Introduction.—The novel and rapidly expanding field of
spintronics is interested in the creation, manipulation, and
detection of polarized or pure spin currents [1]. The con-
ventional methods of doing spintronics are to use magnetic
fields and/or ferromagnets as parts of the creation-manipu-
lation-detection cycle, and to use the Zeeman coupling and
the ferromagnetic-exchange interactions to induce the spin
dependency of transport. More recently, ways to generate
spin accumulations and spin currents based on the coupling
of spin and orbital degrees of freedom have been explored.
Among these proposals, much attention has been focused
on the spin Hall effect (SHE), where pure spin currents are
generated by applied electric currents on spin-orbit (SO)
coupled systems. Originally proposed by Dyakonov and
Perel [2], the idea was resurrected by Hirsch [3] and
extended to crystal SO field by Sinova et al. [4] and
Murakami et al. [5]. The current agreement is that the
SHE vanishes for bulk, k-linear SO coupling for diffusive
two-dimensional electrons [6–8]. This result is however
specific to these systems [9], and the SHE does not vanish
for impurity-generated SO coupling, two-dimensional hole
systems with either Rashba or Dresselhaus SO coupling,
and for finite-sized electronic systems [7,9]. These predic-
tions have been, to some extent, confirmed by experimental
observations of edge spin accumulations in electron [10]
and hole [11] systems, and electrical detection of spin
currents via ferromagnetic leads [12].

Most investigations of the SHE to date focused on dis-
ordered conductors with spin-orbit interaction, where the
disorder-averaged spin Hall conductivity was calculated
using either the Kubo formalism or a diffusion equation
approach [3–9,13,14]. Few numerical works alternatively
used the scattering approach to transport [15] to calculate
the average spin Hall conductance of explicitly finite-sized
samples connected to external electrodes. These investiga-
tions focused on tight-binding Hamiltonians with weak
disorder in simple geometries [16]. The data of Ref. [17]
in particular suggest that diffusive samples with large
enough SO coupling exhibit universal fluctuations of the
spin Hall conductance GsH with rms�GsH� � 0:18e=4�.

These numerical investigations call for an analytical theory
of the SHE in mesoscopic systems, which we provide here.

We analytically investigate the dc spin Hall effect in
mesoscopic cavities with SO coupling. We calculate both
the ensemble-average and the fluctuations of the transverse
spin current generated by a longitudinal charge current.
Our approach is based on random matrix theory (RMT)
[18], and is valid for ballistic chaotic and mesoscopic
diffusive systems at low temperature, in the limit when
the spin-orbit coupling time is much shorter than the mean
dwell time of the electrons in the cavity, �so � �dwell [19].
We show that while the transverse spin current is generi-
cally nonzero for a typical sample, its sign and amplitude
fluctuate universally, from sample to sample or upon varia-
tion of the chemical potential with a vanishing average. We
find that for a typical ballistic chaotic quantum dot, the
transverse spin current corresponds to slightly less than one
excess open channel for one of the two spin species. These
analytical results are confirmed by numerical simulations
for a stroboscopic model of a ballistic chaotic cavity.

In the ballistic regime, contributions to the SO coupling
arise from the crystal field and confinement potentials. In
analogy with diffusive systems, the SHE originating from
the crystal field as well as the asymmetry of the confine-
ment potential in the out of plane direction (i.e., the Rashba
term) can be thought of as the intrinsic effect, while in
plane confinement potentials generate extrinsic contribu-
tions to the SHE. Although the balance between the two
effects modifies nonuniversal properties such as the spin-
orbit time, it does not affect the universal features de-
scribed in this Letter.

Scattering approach.—We consider a ballistic chaotic
quantum dot coupled to four external electrodes via ideal
point contacts, each with Ni open channels (i � 1; . . . 4).
The geometry is sketched in Fig. 1. Spin-orbit coupling
exists only inside the dot, and the electrochemical poten-
tials in the electrodes are spin-independent. A bias voltage
V is applied between the longitudinal electrodes labeled 1
and 2. The voltages V3 and V4 are set such that no net
charge current flows through the transverse electrodes 3
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and 4. We will focus on the magnitude of the spin current
through electrodes 3 and 4, in the limit when the openings
to the electrodes are small enough, and the spin-orbit
coupling strong enough that �so � �dwell.

We write the spin-resolved current through the ith elec-
trode as [15]

 I�i �
e2

h

X
j;�0
T�;�

0

ij �Vi � Vj�: (1)

The spin-dependent transmission coefficients are obtained
by summing over electrode channels

 T�;�
0

i;j �
X
m2i

X
n2j

jtm;�;n;�0 j
2; (2)

i.e., tm;�;n;�0 is the transmission amplitude for an electron
initially in a spin state �0 in channel n of electrode j to a
spin state � in channel m of electrode i. The transmission
amplitudes t are the elements of the 2NT 	 2NT scattering
matrix S, with NT �

P4
i�1 Ni.

We are interested in the transverse spin currents I�z�i �
I"i � I

#
i, i � 3, 4, under the two constraints that (i) charge

current vanishes in the transverse leads, I"i 
 I
#
i � 0, i � 3,

4 and (ii) the charge current is conserved, I1 � �I2 � I.
From Eq. (1), transport through the system is then de-
scribed by the following equation
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where the transverse voltages (in units of V) read
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1

2
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and we defined the dimensionless currents I � e2VJ=h.
We introduced generalized transmission probabilities

 T ���
ij �

X
m2i;n2j

Tr��tmn�
y����tmn�; � � 0; x; y; z;

(5)

where ���� are Pauli matrices (��0� is the identity matrix)
and one traces over the spin degree of freedom.

Random matrix theory.—We calculate the average and
fluctuations of the transverse spin currents J���i ,� � x, y, z
within the framework of RMT. Accordingly, we replace the
scattering matrix S by a random unitary matrix, which, in
our case of a system with time-reversal symmetry (absence
of magnetic field) and totally broken spin rotational sym-
metry (strong spin-orbit coupling), has to be taken from the
circular symplectic ensemble (CSE) [18,20,21]. We re-
write the generalized transmission probabilities T ���

ij as a

trace over S
 

T ���
ij � Tr�Q���i SQ�0�j S

y�;

�Q���i �m�;n� �

�
�mn�

���
��;

Pi�1
j�1 Nj < m �

Pi
j�1 Nj;

0; otherwise:

(6)

Here, m and n are channel indices, while � and � are spin
indices. The trace is taken over both set of indices.

Averages, variances, and covariances of the generalized
transmission probabilities (6) over the CSE can be calcu-
lated using the method of Ref. [22]. For the average trans-
mission probabilities, we find

 hT ���
ij i �

2��0

NT � 1=2

�
NiNj �

1

2
Ni�ij

�
; (7)

while variances and covariances are given by
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FIG. 1. Ballistic quantum dot connected to four electrodes.
The longitudinal bias V induces a charge current through termi-
nals 1 and 2, while the voltages V3;4 are adjusted such that no
charge current flows through the transverse leads 3 and 4. Spin-
orbit coupling is active only in the gray region.
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h�T ���
ij �T

���
kl i �

4���
NT�2NT � 1�2�2NT � 3�

fNiNj�NT � 1��2NT � 1���ik�jl 
 �il�jk��0�


 �NiNk�ij�kl � 2NiNkNl�ij � 2NiNjNk�kl 
 4NiNjNkNl���0 � NiNT�2NT � 1��ijkl


 �2NT � 1��NiNl�ijk 
 NiNk�ijl��0 
 NiNj��ikl 
 �jkl��0� � NiNjNl��ik 
 �jk��0�

� NiNjNk��0��il 
 �jl��g; (8)

where �T ���
ij � T ���

ij � hT
���
ij i.

Because the transverse potentials ~V3;4 are spin indepen-
dent, they are not correlated with T ���

ij . Additionally, tak-
ing Eq. (7) into account, one concludes that the average
transverse spin current vanishes (i � 3, 4),

 hJ���i i �
1

2
hT ���

i2 �T ���
i1 i �

X
j�3;4

hT ���
ij ih

~Vji � 0: (9)

However, for a given sample at a fixed chemical potential
J���i will in general be finite. We thus calculate var�J���i �.
We first note that h ~V3;4i � �N1 � N2�=2�N1 
 N2�, and
that var� ~V3;4� vanishes to leading order in the inverse
number of channels. One thus has
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4
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ij � �

1

2
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���
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X
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���
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 2covar�T ���
i3 ;T

���
i4 �h

~V3ih ~V4i: (10)

From Eqs. (8) and (10) it follows that

 var �J���i � �
4NiN1N2�NT � 1�

NT�2NT � 1��2NT � 3��N1 
 N2�
: (11)

Equations (9) and (11) are our main results. They show
that, while the average transverse spin current vanishes, it
exhibits universal sample-to-sample fluctuations. The ori-
gin of this universality is the same as for charge transport
[18], and relies on the fact expressed in Eq. (8) that to
leading order, spin-dependent transmission correlators do
not scale with the number of channels. The spin current in a
typical sample is thus of order e2V=h in the limit of large
number of channels. In other words, for a given sample,
one spin species has of order one more open transport
channel than the other one. For a fully symmetric configu-
ration, Ni � N, the spin current fluctuates universally for
large N, with rms�Iz3� ’ �e

2V=h�=
������
32
p

. This translates into
universal fluctuations of the transverse spin conductance
with rms�GsH� � �e=4�

������
32
p
� � 0:18�e=4�� in agreement

with Ref. [17].
Numerical simulation.—In the setup of Ref. [17] the

universal regime is not very large and thus it is difficult
to unambiguously identify it. Moreover, in the same setup
all four sides of a square lattice are completely connected
to the external leads (see inset to Fig. 1 in Ref. [17]).

Because of this geometry, there are paths connecting lon-
gitudinal to transverse leads that are much shorter than the
elastic mean free path. It is well known that such paths
contribute nonuniversally to the average conductance. We
therefore present numerical simulations in chaotic cavities
to further illustrate our analytical predictions (9) and (11).

We model the electronic dynamics inside a chaotic
ballistic cavity by the spin kicked rotator [23,24], a one-
dimensional quantum map which we represent by a 2M	
2M Floquet (time-evolution) matrix [25]
 

F ll0 � ��UXUy��ll0 ; l; l0 � 0; 1; . . . ;M� 1; (12a)

�ll0 � �ll0e
�i��l
l0�2=M�0; (12b)

Ull0 � M�1=2e�i2�ll
0=M�0; (12c)

Xll0 � �ll0e
�i�M=4��V�2�l=M�: (12d)

The matrix size 2M � 2L=	F  1 is given by twice the
ratio of the linear system size to the Fermi wavelength. The
matrix X with

 V�p� � K cosp�0 
 Kso��x sin2p
 �z sinp�; (13)

corresponds to free SO coupled motion interrupted peri-
odically by kicks described by the matrix �, correspond-
ing to scattering off the boundaries of the quantum dot. In
this form, the model is time-reversal symmetric, and the
parameter l0 ensures that no additional symmetry exists in
the system. The map is classically chaotic for kicking
strength K * 7:5, and Kso is related to the SO coupling
time �so (in units of the stroboscopic period) through �so �
32�2=K2

soM
2 [24]. From (12), we construct the

quasienergy-dependent scattering matrix [26]

 S�"� � P�e�i" �F �1� PTP���1FPT; (14)

with P a 2NT 	 2M projection matrix

 Pk�;k0� �
�
��� if k0 � l�k�;
0 otherwise:

(15)

The l�k� (k � 1; 2; . . . ; 2NT , labels the modes) give the
position in phase space of the attached leads. The mean
dwell time �dwell (in units of the stroboscopic period) is
given by �dwell � M=NT . At large enough SO coupling,
this model has been shown to exhibit the universality of the
CSE. We refer to Ref. [24] for further details.

Averages were performed over 35 values of K in the
range 41<K < 48, 25 values of " uniformly distributed in
0< "< 2�, and 10 different lead positions l�k�. We set the
strength of Kso such that �so � �dwell=1250, and fixed
values of M � 640 and l0 � 0:2.
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Our numerical results are presented in Fig. 2. Two cases
were considered, the longitudinally symmetric (N1 � N2)
and asymmetric (N1 � N2) configurations. In both cases,
the numerical data fully confirm our predictions that the
average spin current vanishes and that the variance of the
transverse spin current is universal; i.e., it does not depend
on N for large enough value of N. In the asymmetric case
N4 � 2N3, the variance of the spin current in lead 4 is
twice as big as in lead 3, giving further confirmation to
Eq. (11).

Conclusion.—We have calculated the average and
mesoscopic fluctuations of the transverse spin current gen-
erated by a charge current through a chaotic quantum dot
with SO coupling. We find that, from sample to sample, the
spin current fluctuates universally around zero average. For
a fully symmetric configuration Ni � N, this translates
into universal fluctuations of the spin conductance with
rms�GsH� � �e=4�

������
32
p
� � 0:18�e=4��. This agrees well

with the universality observed in recent simulations in
the diffusive regime [17].

We thank C. W. J. Beenakker for valuable comments on
the manuscript. J. H. B. acknowledges support by the
European Community’s Marie Curie Research Training

Network under contract No. MRTN-CT-2003-504574,
Fundamentals of Nanoelectronics. I. A. acknowledges sup-
port by the Deutsche Forschungsgemeinschaft within the
cooperative research center SFB 689 ‘‘Spin phenomena in
low dimensions’’ and NSERC Canada discovery Grant
No. R8000. P. J. acknowledges the hospitality of the
Aspen center for physics.
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FIG. 2. Average and variance of the transverse spin current vs
the number of modes. Top panel: longitudinally symmetric
configuration with N1 � N2 � 2N3 � 2N4 � 2N; bottom panel:
longitudinally asymmetric configuration with N2 � N4 �
2N1 � 2N3 � 2N. In both cases the total number of modes
NT � 6N. The solid (dashed) lines give the analytical prediction
(9) and (11) for the mean (variance) of the spin currents. Empty
diamonds correspond to hJ���i i, circles to var�J���3 � and triangles
to var�J���4 �.
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