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Intrinsic Strength of Silicon Crystals in Pure- and Combined-Mode Fracture without Precrack
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Measurement of the critical fracture strength of single-crystal silicon was carried out by contact-free
laser-based excitation and detection of nonlinear surface acoustic wave (SAW) pulses. The three
crystallographic geometries Si(112){111), Si(112){1 1 1), and Si(110){111) were examined. A comparison
of the optically detected SAW transients and numerically calculated stress-strain fields allowed an
estimate of the intrinsic mechanical strength without using an artificial precrack. Depending on the
geometry, the critical strength varied between 5 and 7 GPa.
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The strength of silicon is of increasing interest in tech-
nology and science. Silicon is the preferred material for
sensors and devices such as microelectromechanical sys-
tems (MEMS), and as their size decreases the issue of scale
in materials strength arises [1]. In several recent theoretical
papers the ideal strength or elastic limit of silicon has been
calculated [2—4]. The main drawback of these calculations
is that only ideal systems were considered. Real silicon
always contains impurities, dislocations, and other types of
intrinsic defects, which decrease the strength; in contrast,
the theoretical strength characterizes an ideal lattice or
perfect crystal not available in practice.

A serious drawback of previous fracture experiments is
the application of artificial precracks or notches to the
specimen [5,6]. Most measurements have used quasistatic
loads to reach the critical strain. This requires mechanical
contact and a suitable geometry to realize a uniform stress
field. With an artificial notch, propagation of an existing
crack rather than nucleation is investigated [7]. While the
directional anisotropy in the cleavage fracture of silicon
has been studied theoretically [8,9], experimental results
are lacking in general.

Previous fracture experiments indicated that crack nu-
cleation started on the surface along the weakest Si{111}
cleavage plane [10,11]. Crack nucleation occurs under a set
of simultaneously acting tensile and shear stress compo-
nents with their ratio determined by the inclination of the
cleavage plane [10]. Mixed-mode processes complicate the
understanding of crack nucleation. That is why geometries
with the cleavage plane normal to the surface were chosen.
In this Letter, dynamic fracture of silicon by nonlinear
surface acoustic wave (SAW) pulses is studied for geome-
tries where the maximal tensile stress is normal to the
cleavage plane [10-12].

Nonlinear SAWs can produce shock fronts involving
transient strains or stresses on the nanosecond time scale
that exceed the critical fracture strength. Because of
the extensive strain and the nonlinearity of silicon, the
finite SAW pulses gain higher-frequency components
during propagation by frequency up-conversion [13].
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Note that it is much easier to reach strong nonlinearity
with wideband pulses than with sinusoidal waves. The
maximum tension or compression in the stress field,
and thus crack nucleation, is always localized at the sur-
face. As the SAW penetration depth is about one wave-
length, the energy density at the surface grows with
nonlinear SAW propagation. The optically detected SAW
profiles and numerical solution of the nonlinear evolution
equation were employed for stress-strain field calculations
at the location of failure. The observed critical strength of
silicon varies with the crystallographic plane and direction
(“‘geometry’).

Excitation of SAW pulses with finite amplitudes was
accomplished by the absorption-layer method [12-14].
The laser radiation of a 1.064 um Nd:YAG laser with
30-160 mJ pulses with 8 ns duration was focused into a
line of 8 mm length and ~15 um width to launch broad-
band SAW pulses with a plane wave front. This technique
allowed the excitation of nanosecond SAW pulses with
surface strains reaching ~0.01 (‘“‘acoustic Mach number’’)
that evoke a nonlinear elastic response such as harmonic
generation. The frequency spectrum of excited SAW
pulses essentially depends on the width of the source
line, thermophysical properties, and laser pulse duration.

The probe-beam deflection (PBD) technique was em-
ployed for SAW detection. A diode-pumped cw Nd:YAG
laser radiating at 0.532 um at ~100 mW was used to
monitor the transient slope of the surface. The laser beam
was divided into two parts and each beam was sharply
focused onto the surface with ~4 wm spot size, one spot
~1 mm from the source and the second at a distance of
~17 mm. The frequency bandwidth of the setup was 5—
500 MHz, limited by the finite size of the probe spot at the
high-frequency side and by the electronics at its low-
frequency side. The bandwidth limitation may result in a
lower estimated stress since the high-frequency compo-
nents are mainly responsible for the stress. The Si(112) and
Si(110) planes of float-zone silicon with a typical miscut
tolerance <<0.15° and surface resistance >1000 Ohmcm
were used as delivered by CrysTec.
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In silicon, the elastic properties depend on the crystal cut
or free surface plane and the direction of SAW propagation
along this plane. The linear elastic properties are described
by three second-order elastic constants represented by the
fourth-rank stiffness tensor C;;;, which has three indepen-
dent components. Quadratic nonlinearity is characterized
by the sixth-rank tensor Cjj;,,, containing six independent
constants. The tensors of the second- and third-order elas-
tic constants have to be transformed to the particular plane
to provide the exact solutions for nonlinear evolution of
SAWSs [15]. The stress-strain relation can be applied in its
linear form at any particular point to a very good approxi-
mation [16] o;; = Cjjiuy;, where the indices refer to the
X1, Xo, and x5 axes, u; is the ith component of the particle
displacement vector u(r, 1), u;; = du;/dx;, and o;; is the
stress tensor in symmetric form with the force acting in the
direction of the i axis on the unit area with orientation
normal to the j axis. Here x; points in the direction of wave
propagation, the plane with x, = 0 defines the sagittal
plane, and the x5 axis is normal to the free crystal surface
with the occupied region at x3 < 0.

The signal V(7) measured with the PBD setup is propor-
tional to the surface slope V = us3;/c. To determine the
coefficient of proportionality (calibration factor c¢) the set
of nonlinear evolution equations was solved [17]
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where B, is the complex-valued amplitude of the nth
harmonic of the signal ¢V(¢), 7 is the propagation distance,
qo is the fundamental wave number, and the kernel F(x) is
a dimensionless function that depends on the ratio of the
second-order to third-order elastic constants of the selected
geometry and describes the binary interaction of spectral
components. It is defined over the segment x € [0, 1] and
is symmetric about x = 1/2, so that F(x) = F(1 — x).

In isotropic solids F(x) is purely imaginary, whereas in
crystals, with the exception of high-symmetry planes, it
possesses a nonzero real part. In this case, the kernels F|
and F, for counterpropagating waves are related by
F,(x) = —F,(x)*. The procedure of calculating F(x) has
been described previously [13,17]. This function describes
the efficiency of frequency conversion, e.g., frequency up-
conversion, leading to an enrichment of high frequencies in
the pulse spectrum. The calculations were carried out with
the following normalization of the displacement vector
component at the surface: us;(x; = 0) = 1.

Numerical integration of Egs. (1) over the distance
between the two probe spots, with the waveform obtained
at the first probe location as an initial condition, provides
the prediction of the signal at any remote spot. By varying
the calibration factor ¢ the predicted waveform was fitted

to the measured one, thus obtaining the displacement
gradient at the surface as u3; = cV. In certain geometries,
for example Si(111)(112) and Si(112){111), nonlinear evo-
lution results in the formation of two narrow spikes or
shock fronts, with the interval strongly dependent on the
wave magnitude [18]. In the notation used hereafter the
plane [e.g., (111)] indicates the free surface of the sample
and the direction of SAW propagation is designated, for
example, by (112).

The distance between the two shocks in a SAW pulse
was used as a fitting criterion, which makes the whole
procedure more precise than applying an amplitude crite-
rion. Note that ¢ depends only on the arrangement of the
PBD setup and the reflectivity of the sample surface for the
probe light. Therefore, once determined for a given mate-
rial, it can be used for any orientation of the material
because the signal is proportional to the surface gradient.
We estimate the error of calibration to be below 10%.

It is always possible to evaluate the stress and strain
fields at any point of the sample as the unique solution of
the boundary problem for which the surface slope us,
coincides with the measured one. The o; stress compo-
nent attains its maximum at the surface, whereas all other
components have a smaller magnitude o5, 05, < 0 or
are equal to zero if the sagittal plane coincides with one of
the high-symmetry planes [18].

The fracture induced by the stress field occurs along one
of the planes of cleavage of the {111} type, which are
normal to the sagittal plane. In order to calculate the crack
driving conditions we transformed the stress tensor to the
coordinate system associated with the crack (or the cleav-
age plane) with the x] axis normal to this plane and x7
parallel to the free sample surface. In the rotated coordinate
system the fracture modes I, II, and III are determined by
the stresses o1}, o, and o}, respectively.

First, the results for the Si(112)[111] geometry are dis-
cussed. Here the kernel F possesses a significant real part,
which results in a very different type of nonlinear SAW
evolution in opposite directions. The abrupt jump of the
surface slope generated in the (1 1 1) direction is associated
with a positive or tensile peak of ;. For Si(112){111) the
measured u3, transient has an N-type form that corre-
sponds to two negative peaks or compression. As a result,
the wave propagating in the (1 1 1) direction induced frac-
ture at lower laser pulse energies than the reversal wave.
The same behavior has previously been observed for the
Si(111){112) and Si(111){112) geometries, where the
latter also exhibited an N-type profile of the transient [10].

For the Si(112)(111) geometry the SAW profiles were
recorded at probe spots 0.5 mm and 17.0 mm from the
source. The calibration factor was obtained with the iter-
ative procedure described above. Then the direction of
propagation was reversed to Si(112)(111), and the SAW
pulse was measured at the closest point to the source. As
the calibration factor and SAW solution were known, the
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FIG. 1. Optical microscope image of the Si(112) surface after
propagation of a nonlinear SAW pulse in the (11 1) direction.
The inset shows part of a bent long crack, as obtained by
secondary emission electron microscopy (steplike feature).

stress-strain field could be calculated from the measured
transient SAW profile and predicted for any other point. An
optical image of a fractured Si(112) surface after SAW
propagation in the (11 1) direction is presented in Fig. 1.
The vertical line at the left side is the imprint of the
exciting laser source. At a distance ~2 mm from the
source the first crack is observed. Further propagation of
the SAW pulse produced numerous cracks that extended
into the (110) direction with a length of 50-100 wm. The
analysis of the long bent crack features revealed that they
consist of a set of small cracks along the (110) direction,
similar to the steps of a stair (see inset of Fig. 1). In the
Si(112)(111) geometry an extended crack field could be
realized with a laser pulse energy of ~30 mJ.

The crack field results from repeated fracture processes
occurring during pulse propagation, whenever the stress
reaches the intrinsic strength of chemical bonding. The
maximum of the strain energy is localized at the surface
and decays into the depth exponentially. Note that fracture
consumes mainly the high-frequency part of the pulse
spectrum. After frequency up-conversion the critical stress
is reached again during further propagation and so on. Note
that silicon exhibits a phonon focusing effect for SAWs in
the {mmn}[nn2m] geometries, where the directions of the
group and phase velocities coincide.

There are two {111} cleavage planes in the sagittal
section of the Si(112)(1 11) geometry. The first is perpen-
dicular to the surface whereas the second is tilted at an
angle of 19.5° to the surface. The normal plane of cleav-
age, {11 1}, is subjected to mode I load at the surface, since
the only nonzero stress component is ;. The peak value
of this stress was estimated as ~5 GPa. Figure 2 shows the
time dependence of the corresponding measured and pre-
dicted stress components. For the other plane of cleavage,
{111}, the load consists of contributions to mode I and
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FIG. 2. Calculated stress components at the probe-beam spot
for the Si(112)(1 1 1) geometry and stresses predicted at the first
fracture point for the two cleavage planes.

mode II fracture. Their magnitudes are related to o; by
ol (t) = 0.11 o, (1) for mode I and o7, (r) = 0.31 o, (2)
for mode II with the peak values of 0.55 GPa and 1.5 GPa,
respectively. Another nonzero component at the surface
ol3(t) = 0.89 o (1) acts parallel to the fracture surface.

The Si(110)(111) geometry has a single cleavage plane
perpendicular to the free surface. The nonlinear evolution
generates a steep front of u3;, which corresponds to a
positive tensile o;; peak. Besides this stress there are
two other nonzero components at the surface, namely
0,3, and 0,,. The shear component o, appears due to
the fact that the sagittal plane is not parallel to the plane of
mirror symmetry of the crystal, though its magnitude is
relatively small with o;/0,; = 15.
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FIG. 3. Optical microscope image of the silicon surface after
nonlinear SAW pulse propagation in the Si(110)(111) geometry.
The inset shows a FIB image of in-depth crack propagation.
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FIG. 4. Calculated stress components for the Si(110){111)
geometry.

In order to calculate the critical stress, the SAW pulse
was measured close to the first crack, as indicated in Fig. 3.
This figure presents an optical image of the fractured
Si(110) surface. Since the probe beam was located near
the first crack, the measured transient was employed to
estimate the critical stress. The stress condition at the crack
location consists of mode I load with a peak value of 7 GPa
and mode III tearing load of 0.5 GPa. The temporal behav-
ior of the relevant stress components is presented in Fig. 4.
Besides the 0| and 0; components, a 0, stress compo-
nent exists at the surface with a peak value of ~1 GPa.
This component stretches the material parallel to the sur-
face crack. At a depth of several micrometers o33 and o3,
come into play. Their local maxima are reached at about
~10 pum depth.

In the Si(110){(111) geometry failure could be achieved
only by increasing the laser pulse energy to ~150 mlJ, as
compared to 30 mJ for weak fracture geometries. Only
single cracks could be detected at distances >0.5 mm from
the source with a length of 50-120 wm, as shown in Fig. 3.
There is no crack field in this geometry. This can be
explained by the lower nonlinearity and the absence of
phonon focusing effects. Therefore, the diffraction losses
are higher and the SAW pulse, after initial failure, could
not easily reach the critical stress again. The FIB experi-
ments clearly indicate that crack propagation was re-
stricted to the Si{111} plane with penetration depths of
100 nm to 2.5 pum, as can be seen in the inset of Fig. 3.
Obviously the stresses were sufficient for crack propaga-
tion into the depth, and one reason is the existence of the
05, stress component. In the case of low penetration it is
possible that after instantaneous opening the crack closes
again. The present experiments were not confined to two

dimensions; however, penetration into the depth was sub-
stantially smaller than extension of the crack line along the
surface.

In summary, notch-free dynamic fracture is introduced
that allows the determination of the intrinsic strength of
anisotropic materials for defined crystallographic geome-
tries involving pure-mode and mixed-mode fracture. The
stresses found for crack nucleation varied between 5 and
7 GPa, depending on geometry, and thus were lower than
the calculated ideal tensile strength of 22 GPa [2].
Therefore, with nonlinear SAW pulses the intrinsic
strength of real materials can be studied under transient
dynamic load without any mechanical contact.
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