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The inelastic scattering of neutrino off 4He is calculated microscopically at energies typical for core-
collapse supernova environment. The calculation is carried out with the Argonne V18 nucleon-nucleon
potential and the Urbana IX three-nucleon force. Full final state interaction is included via the Lorentz
integral transform method. The contribution of axial meson exchange currents to the cross sections is
taken into account from effective field theory of nucleons and pions to order O�Q3�.
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The current theory of core-collapse supernova holds
some open questions regarding the explosion mechanism
and late stage nucleosynthesis. In order to analyze these
questions, a better understanding of the involved micro-
scopical processes is needed. In particular, due to the high
abundance of� particles in the supernova environment, the
inelastic neutrino-4He reaction has drawn attention in re-
cent years. This interest yielded a number of studies trying
to estimate the cross section and the role of neutrino-4He
reactions in the described phenomena [1–9]. However to
date, a full ab initio calculation that includes a realistic
nuclear Hamiltonian is still missing. Moreover, the contri-
bution of meson exchange currents (MEC) to this particu-
lar scattering process was never estimated.

In this Letter we present a full ab initio calculation of the
inelastic neutrino-4He reactions that meets these chal-
lenges. Specifically, we consider the energy dependent
inclusive inelastic cross sections for the following chan-
nels: 4He��x; �

0
x�

4
2X, 4He� ��x; ��0x�

4
2X, 4He� ��e; e

��41X, and
4He��e; e��43X, where x � e;�; �, and A

ZX stands for the
final state A-nucleon system, with charge Z.

Core-collapse supernovae are believed to be neutrino
driven explosions of massive stars. As the iron core of
the star becomes gravitationally unstable it collapses until
the nuclear forces halt the collapse and drive an outgoing
shock. This shock gradually stalls due to energy loss
through neutrino radiation and dissociation of the iron
nuclei into a mixture of � particles and free nucleons.

At this stage, the protoneutron star (PNS) cools mainly
by emitting neutrinos in enormous numbers. These neutri-
nos are a result of thermal pair production, and thus are
produced in flavor equilibrium. The characteristic tempera-
tures of the emitted neutrinos are about 6–10 MeV for ��;�
( ���;�), 5–8 MeV for ��e, and 3–5 MeV for �e. The differ-
ence in temperature originates from the large cross sections
for �e; ��e electron scattering and charge current reactions.

In this temperature range there is a considerable amount
of � and � neutrinos (and antineutrinos) which carry more
than 20 MeV, hence may dissociate the 4He nucleus
through inelastic neutral current reactions. This creates
the seed to light element nucleosynthesis in the supernova
environment [2]. A knock out of a nucleon from a 4He

nucleus in the helium rich layer, followed by a fusion of
the remaining trinucleus with another � particle, will result
in a 7-body nucleus. This process is an important source of
7Li, and of 11B and 19F through additional � capture
reactions. Because of the high dissociation energy of the
�, this mechanism is sensitive to the high-energy tail of the
neutrinos. Thus a correct description of the process must
contain an exact, energy dependent cross section for the
neutral inelastic �-� reaction, which initiates the process.
The relatively low temperature of the �e’s and ��e’s emitted
from the star’s core suppress the probability for inelastic
reactions of these neutrinos with 4He in the supernova
scenario. Oscillations of the � and � (anti)neutrinos can
yield a secondary source of energetic electron neutrinos.
The resulting charge current reactions would affect the
aforementioned yields [5].

The possible role of inelastic �-� reactions in reviving
the supernova explosion shock was pointed out by Haxton
[1]. The hot dilute gas above the PNS and below the
accretion shock contains up to 70% 4He nuclei. It is
believed that neutrinos emitted from the collapsed core
deposit energy in the matter behind the shock, and even-
tually reverse the flow and revive the shock. This delayed
shock mechanism has not yet been proved in full hydro-
reactive simulations. Haxton has suggested that inelastic
neutral reactions of neutrinos with 4He can lead to an
enhanced neutrino energy deposition. This effect is usually
ignored (see, however, [6,8]) and was not considered in a
full hydrodynamic simulation. The energy deposition also
creates the needed conditions for the r process, believed to
occur in the material ejected from the PNS. The breakup of
4He by neutrinos is part of the chain of reactions which
determines the amount of free neutrons [10] needed for a
successful r process.

The first challenge in the study of the inelastic
neutrino-4He reactions is the solution of the four-body
problem, for ground and excited states. As 4He has no
bound excited states, a detailed knowledge of the four
nucleons continuum is needed to assure the final state
interaction (FSI). This makes an explicit calculation im-
possible, since a complete description of the nuclear four-
body system is currently out of reach. We avoid this
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complication by calculating the FSI through the Lorentz
integral transform (LIT) method [11]. For the solution of
the ground state wave function and the LIT equations we
use the effective interaction in the hyperspherical harmon-
ics (EIHH) approach [12]. For the nuclear Hamiltonian, we
take the nucleon-nucleon (NN) potential Argonne V18
(AV18) [13] with the Urbana IX (UIX) [14] three-nucleon
force (3NF). This Hamiltonian has been used successfully
to reproduce the spectra of light nuclei [14], and electro-
weak reactions with light nuclei [15–17].

In the limit of small momentum transfer with respect to
the mass of the Z;W� bosons, the weak interaction Hamil-
tonian is given by ĤW � ��G=

���
2
p
�
R
d3xĵ�� ~x�Ĵ

�� ~x�,
where G is the Fermi weak coupling constant, ĵ�� ~x� is
the lepton current, and Ĵ� is the nuclear current. The lepton
is a point Dirac particle, and evaluating its current and its
contribution to the cross section is relatively simple, yield-
ing only kinematical factors. The nuclear current, however,
is more complicated. The formal structure of the nuclear
weak neutral current is

 Ĵ 0
� � �1� 2sin2�W�

�0

2
ĴV� �

�0

2
ĴA� � 2sin2�W

1

2
ĴV�; (1)

and the structure of the charged currents is

 Ĵ �� �
��
2
ĴV� �

��
2
ĴA�; (2)

where the superscript A (V) stands for axial (vector) cur-
rents, �W is the weak mixing angle, and �� are the isospin
ladder operators.

The leading contributions to these operators are the one-
body terms. It is well known, however, that mesonic de-
grees of freedom can contribute to the nuclear currents
through many-body terms, namely, MEC, even if they do
not appear explicitly in the Hamiltonian. The modern point
of view [18] has created a systematic way of considering
these degrees of freedom, that is the effective field theory
(EFT) approach. EFT is based on the idea that an observ-
able characterized by a momentum Q does not depend on
momenta much higher than Q. One introduces a cutoff
momentum �, and integrates out the degrees of freedom
present at Q larger than �. A perturbation theory in the
small parameter Q=� can now be developed systemati-
cally. The coefficients of the different terms are called low-
energy constants (LEC), usually calibrated in experiments.
EFT has two major advantages: one is the link to the
underlying high-energy theory, which in the case of the
strong interaction is commonly believed to be quantum
chromodynamics (QCD), the other advantage is the ability
to provide a control of the accuracy in the calculation. The
problem with EFT is that while a percentage level accuracy
in describing scattering process is already achieved using a
next-to-leading order (NLO) Lagrangian, this is not the
case when trying to recover successfully the wealth of
experimental data described by the phenomenological ap-
proach (nuclear binding energies, for example). This task

demands at least next-to-next-to-next-to-leading order
(NNNLO) EFT Lagrangians [19]. It is thus clear that a
hybrid method that joins together the success of the stan-
dard nuclear physics approach and the clear advantages of
EFT is called for, although the resulting MEC will not be
completely consistent with the nuclear Hamiltonian. This
hybrid approach was coined by Rho as MEEFT (‘‘more
effective EFT’’) [20], and was already applied to study
electroweak reactions for A � 2; 3; 4 nuclei [21]. In this
work we adopt the hybrid approach combining the phe-
nomenological AV18 and UIX nuclear potentials with
EFT-based nuclear MEC.

The conservation of vector current hypothesis states that
the vector current is an isospin rotation of the electromag-
netic current. Thus, the electric part of the vector meson
exchange currents can be approximated very well at low q
via the Siegert theorem, from the single nucleon vector
charge operator. That is not the case for the axial current,
which is not conserved and should be calculated explicitly.
For this task we shall use the EFT meson exchange
currents.

The typical energy scale of the neutrino in the supernova
environment is some tens of MeV, thus a proper cutoff is of
at least a few hundred MeV. It is important to notice that
the cutoff should not be higher than the mass of the
nucleon, which is the order of the QCD mass scale. We
will use cutoff values in the range � � 400–800 MeV. In
the EFT scheme employed here, nucleons and pions are the
explicit degrees of freedom. The model includes the pions
as Goldstone bosons of the chiral symmetry [22]. The axial
currents are the Nöther currents derived from a NLO order
Lagrangian, in a relativistic approach. These currents are
accurate to NNNLO and are given in momentum space, as
they originate from a Lorentz invariant theory. For the
transformation to configuration space, we perform a
Fourier transform with cutoff [21],

 Ô� ~x� �
Z d3 ~q

�2��3
Ô� ~q�S��q�: (3)

The cutoff function S��q� is 1 for q� �, and approaches 0
for q� �. We use a Gaussian cutoff function as proposed
by Park et al. [21], i.e., S��q� � exp��q2=�2�. It is im-
portant to note that this method leads to the same single
nucleon operators as the standard nuclear physics ap-
proach. The meson exchange currents in configuration
space are the Fourier transform of propagators with a cut-
off, which in the limit �! 1 are just the usual Yukawa
functions. In contrast to the standard nuclear physics ap-
proach, the coefficients of the functions are not structure
functions, but LECs. All the LECs which originate from a
nucleon-pion interaction are calibrated using low-energy
pion-nucleon scattering. Alas, in this order there are also
two nucleon contact terms, which introduce LECs that can
be calibrated only by nuclear matter processes. Fortu-
nately, using Lorentz invariance, the axial currents intro-
duce only one unknown LEC, which is denoted by d̂r. This
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coefficient has been matched to the triton half-life over this
energy range. The experimental accuracy of the triton half-
life, should be considered a part of the model error, and re-
flects in an uncertainty of few percent in d̂r calibration. As
a check, we reproduce the cutoff dependence of Ref. [21].

For low-energy reactions a multipole decomposition of
the currents is useful. Applying Fermi’s golden rule, to
inclusive reactions with unpolarized targets, and consider-
ing recoil effects, the differential cross section takes the
form [23]
 �
d�a

dkf

�
�� ���
�

2G2

2Ji�1
k2
fF

a�Zf;kf�

	
Z
d�
Z �

0
sin�d�	

�
��!�

q2

2M4He

�

	

�X1
J�0


XĈRĈJ�XL̂RL̂J�XĈL̂ReRĈ�JL̂J �

�
X1
J�1


XM̂RM̂J
�XÊRÊJXÊM̂ReRÊ�JM̂J

�

�
; (4)

where kf is the momentum of the outgoing lepton, Ji � 0
is the angular momentum of the 4He, and Zf is the charge
of the residual nuclear system. The four-vector (!; ~q)
represents energy and momentum transfer, and � is the
angle between the incoming neutrino direction and out-
going lepton direction. The superscript a denotes the iso-
spin component, with a � 0 for the neutral current and
a � � for the charged currents. The Coulomb factor
Fa�Z; k� is equal to 1 for neutral currents, and is the
Fermi function for charged current. The functions XÔ1Ô2

are the leptonic kinematical factors (related to the Ô1; Ô2

multipoles, XÔ1
� XÔ1Ô1

). They depend on the mass and
the momentum of the outgoing lepton. Similarly, the func-
tions RÔ1Ô2

��; q� are the nuclear response functions. The
transition operators CJ�q�, LJ�q�, EJ�q�, MJ�q� are the
reduced Coulomb, longitudinal, transverse electric, and
transverse magnetic operators of angular momentum J.
The response functions are calculated by inverting the
Lorentz integral transforms

 LÔ1Ô2
��; q� �

Z
d�

RÔ1Ô2
��; q�

��� �R�2 � �2
I

� h ~�1 j ~�2i;

where � � �R � i�I, and j ~�ii (i � 1; 2) are solutions of
the Schrödinger-like equations

 �H � E0 � �� j ~�i��; q�i � Ôi�q� j �0i:

The localized character of the ground state, and the imagi-
nary part of �, give these equations an asymptotic bound-
ary condition similar to a bound state. As a result, one can
solve these equations with the hyperspherical harmonics
(HH) expansion using the EIHH [12] method. The matrix
elements h ~�1j ~�2i are calculated using the Lanczos algo-
rithm [24].

In the supernova scenario one has to consider neutrinos
with up to about 60 MeV. Usually, the leading contribu-
tions in weak nuclear processes are the Gamow-Teller and
the Fermi operators. Because of the total angular momen-
tum and spin structure of the 4He nucleus, they are both
strongly suppressed. In fact, the Gamow-Teller operator
contributes only due to the small P- and D-wave compo-
nents of the ground state wave function. The same argu-
ment follows for the MV

1 operator. In addition, 4He is an
almost pure zero-isospin state [25]; hence, the Fermi op-
erator vanishes. Therefore, the leading contributions to the
inelastic cross section are due to the axial vector operators
EA2 , MA

1 , LA2 , LA0 and the vector operators CV1 , EV1 , LV1 (the
latter are all proportional to each other due to the Siegert
theorem). For the neutrino energies considered here it is
sufficient to retain contributions up to O�q2� in the multi-
pole expansion [3]. In Fig. 1 we present for these multi-
poles the convergence of the LIT as a function of the HH
grand angular-momentum quantum number K. It can be
seen that the EIHH method results in a rapid convergence
of the LIT calculation to a subpercentage accuracy level.
Comparing with a previous work, [3], we conclude that the
3NF does not affect much the convergence rate of these
operators.
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FIG. 1 (color online). Convergence, for the leading operators,
of LÔ1Ô2

=q as a function of the HH grand angular momenta K.

TABLE I. Temperature averaged neutral current inclusive in-
elastic cross section per nucleon as a function of neutrino
temperature.

h�0
xiT �

1
2

1
A h�

0
�x � �

0
�x
iT [10�42 cm2]

T [MeV] AV8’ [3] AV18 AV18� UIX AV18� UIX�MEC

4 2:09	 10�3 2:31	 10�3 1:63	 10�3 1:66	 10�3

6 3:84	 10�2 4:30	 10�2 3:17	 10�2 3:20	 10�2

8 2:25	 10�1 2:52	 10�1 1:91	 10�1 1:92	 10�1

10 7:85	 10�1 8:81	 10�1 6:77	 10�1 6:82	 10�1

12 2.05 2.29 1.79 1.80
14 4.45 4.53 3.91 3.93
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It is customary to assume that supernova neutrinos are in
thermal equilibrium, so their spectra can be approximated
by the Fermi-Dirac distribution with a characteristic tem-
perature T. In Table I we present the temperature averaged
total neutral current inelastic cross section as a function of
the neutrino temperature for the AV8’, AV18, and the
AV18� UIX nuclear Hamiltonians and for the AV18�
UIX Hamiltonian adding the axial MEC. From the table it
can be seen that the low-energy cross section is rather
sensitive to details of the nuclear force model (the effect
of 3NF is about 30%). In contrast, the effect of axial MEC
is rather small in our case, being on the percentage level.
Because of the spatial symmetry of the exchange current, it
contributes only to the Gamow-Teller operator. As men-
tioned above, this multipole is suppressed for 4He. Thus,
albeit doubling the Gamow-Teller response function, the
axial MEC contribution is small. Although presented for
the neutral current, these arguments hold true also for the
charged currents since the response functions are related by
isospin rotation.

InTables II and III we present (for AV18�UIX�MEC)
the temperature averaged cross section and energy transfer
as a function of the neutrino temperature for the various
processes. In both tables it can be seen that the charged
current process is roughly a factor of five more efficient
than the neutral current process. Our results are of the same
order of magnitude as previous estimates by Woosley et al.
[8], though the differences can reach 25%. The current
work predicts a stronger temperature dependence, with
substantial increment at high temperatures. This indicates
a different structure of the predicted resonances.

Summarizing, we present the first full microscopic
study of �-� reactions, using a state of the art nuclear
Hamiltonian including MEC. The overall accuracy of our
calculation is of the order of 5%. This error is mainly due to
the strong sensitivity of the cross section to the nuclear
model, in particular, to the 3NF. The numerical accuracy of
our calculations is of the order of 1%. The contribution of
the axial MEC is lower than 2%; therefore, the cutoff
dependence and the overall uncertainty in d̂r insert error
of the same order. With the present calculation, we make
an important step in the path toward a more robust and
reliable description of the neutrino heating of the preshock
region in core-collapse supernovae, in which 4He plays a
decisive role.

We would like to thank G. Orlandini and W. Leidemann
for their useful comments. This work was supported by the
Israel Science Foundation (Grant No. 361/05).

*Electronic address: gdoron@phys.huji.ac.il
†Electronic address: nir@phys.huji.ac.il

[1] W. C. Haxton, Phys. Rev. Lett. 60, 1999 (1988).
[2] R. I. Epstein, S. A. Colgate, and W. C. Haxton, Phys. Rev.

Lett. 61, 2038 (1988).
[3] D. Gazit and N. Barnea, Phys. Rev. C 70, 048801 (2004).
[4] T. Yoshida, T. Kajino, and D. H. Hartmann, Phys. Rev.

Lett. 94, 231101 (2005).
[5] T. Yoshida et al., Phys. Rev. Lett. 96, 091101 (2006).
[6] N. Ohnishi, K. Kotake, and S. Yamada, astro-ph/0606187.
[7] T. Suzuki et al., Phys. Rev. C 74, 034307 (2006).
[8] S. E. Woosley, D. H. Hartmann, R. D. Hoffman, and W. C.

Haxton, Astrophys. J. 356, 272 (1990).
[9] B. S. Meyer, Astrophys. J. 449, L55 (1995).

[10] G. M. Fuller and B. S. Meyer, Astrophys. J. 453, 792
(1995).

[11] V. D. Efros, W. Leidemann, and G. Orlandini, Phys. Lett.
B 338, 130 (1994).

[12] N. Barnea, W. Leidemann, and G. Orlandini, Phys. Rev. C
61, 054001 (2000); Nucl. Phys. A693, 565 (2001); N. Bar-
nea and A. Novoselsky, Ann. Phys. (N.Y.) 256, 192 (1997).

[13] R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys.
Rev. C 51, 38 (1995).

[14] B. S. Pudliner et al., Phys. Rev. C 56, 1720 (1997).
[15] D. Gazit et al., Phys. Rev. Lett. 96, 112301 (2006).
[16] L. E. Marcucci et al., Phys. Rev. C 63, 015801 (2000).
[17] R. Schiavilla et al., Phys. Rev. C 58, 1263 (1998).
[18] S. Weinberg, Phys. Lett. B 251, 288 (1990).
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Phys. Rev. C 65, 054003 (2002); M. Viviani, A. Kievsky,
and S. Rosati, ibid. 71, 024006 (2005).

TABLE III. Temperature averaged inclusive inelastic energy
transfer cross-section per nucleon as a function of temperature.

h�!iT [10�42 MeV cm2]
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4 4:50	 10�2 4:15	 10�2 2:27	 10�1 1:80	 10�1

6 9:26	 10�1 8:56	 10�1 4.56 3.70
8 5.85 5.43 28.4 22.9

10 21.7 20.2 103.8 84.4

TABLE II. Temperature averaged inclusive inelastic cross sec-
tion per nucleon as a function of temperature.

h�iT [10�42 cm2]
T [MeV] (�x; �0x) ( ��x; ��0x) (�e; e�) ( ��e; e

�)

2 1:47	 10�6 1:36	 10�6 7:40	 10�6 5:98	 10�6

4 1:73	 10�3 1:59	 10�3 8:60	 10�3 6:84	 10�3

6 3:34	 10�2 3:07	 10�2 1:63	 10�1 1:30	 10�1

8 2:00	 10�1 1:84	 10�1 9:61	 10�1 7:68	 10�1

10 7:09	 10�1 6:54	 10�1 3.36 2.71
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