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Khinchin’s theorem of ergodicity is examined by means of linear response theory. The resulting ergodic
condition shows that, contrary to the theorem, irreversibility is not a sufficient condition for ergodicity. By
the recurrence relations method, we prove that irreversibility is broader in scope than ergodicity, showing
why it can only be a necessary condition for ergodicity.
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1. Introduction.—Khinchin is an important name in
ergodic theory, a branch of mathematics, tracing its origin
to Boltzmann’s ergodic hypothesis. Unlike most others in
this field, Khinchin formulated his work in terms of corre-
lation functions, the language of statistical mechanics. It is
thus no surprise to find that his work has made a deep
impact in physics, e.g., Kubo [1]. Khinchin’s theorem
states that a variable A is ergodic if the autocorrelation
function of A is ‘‘irreversible.’’ We contend that this theo-
rem cannot be completely correct if A refers to a Hermitian
system and if the averages of A are given by the linear
response theory of inelastic scattering processes. We prove
that the irreversibility of A is only a necessary condition,
not a sufficient one, for the ergodicity of A in such a
system.

2. Khinchin’s theorem [2].—The theorem states that, for
a classical system, the ergodicity of a dynamical variable A
in thermal equilibrium

 lim
T!1

1

2T

Z T

�T
hA�t�idt � hAi (1)

must hold if the autocorrelation function of A satisfies the
relation

 lim
t!1
hA�t�A�0�i � hAihAi; (2)

where A � A�0� and the angular brackets denote an en-
semble average, further defined in section 3. Thus, accord-
ing to Khinchin, (2) implies (1). Kubo asserts after
Khinchin that the theorem may be reversed. That is true
because, as we shall show, (1) requires (2). The two are,
however, not one to one as Kubo seemed to have believed.

3. Linear response theory and time averages.—We first
consider a quantum system and thereafter a classical one.
Let a system denoted by H be Hermitian. We turn on a
weak field h�t� at a remote past t � �T, T ! 1. The total
energy at t is given by

 H0�t� � H�A� � h�t�A: (3)

According to linear response theory [1],

 hA�t�iH0�t� � hA�t�iH �
Z t

�T
h�t0��A�t� t0�dt0; (4)

where h. . .iH0 and h. . .iH mean ensemble averages with the
density matrices of H0 and H, respectively, and �A�t� t0�
is a response function, depending onH, notH0, assumed to
be both causal and stationary. Let us take a time average
(TA) on (4): noting that for a Hermitian system, hA�t�iH �
hAiH [3], we obtain

 ITA� lim
T!1

1

2T

Z T

�T
hA�t�iH0�t�dt

�hAiH� lim
T!1

1

2T

Z T

�T

Z t

�T
h�t0��A�t� t0�dt0dt: (5)

Suppose h�t� � h, a constant field. Then the right-hand
side of (5) becomes

 ITA � hAiH � h lim
T!1

1

2T

Z T

�T

Z t

�T
�A�t� t0�dt0dt: (6)

Let us assume (after Khinchin) the ergodicity of A:

 ITA � hAiH0 ; (7)

where H0 � H � hA. By linear response theory, hAiH0 �
hAiH � h�A, where �A is the static response function [1].
Thus assuming the ergodicity of A is the same as assuming:

 lim
T!1

1

2T

Z T

�T

Z t

�T
�A�t� t

0�dt0dt � �A: (8)

Thus if (8) is proved, (1) is proved to order h, which is
sufficient. Now we already have proved that (8) is valid if
the following condition holds [4]: 0<W <1, where

 W �
Z 1

0
RA�t� dt; (9)

where RA�t� is the autocorrelation function of A

 RA�t� � �A�t�; A�; (10)

where RA�0� � �A. The inner product is defined as [5]: if A
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and B are Hermitian operators,

 �A;B� � 1=�
Z �

0
he�HAe��HBid�� hAihBi; (11)

where � is the inverse temperature and the brackets are
ensemble averages with the density matrix of H. In the
classical limit (�! 0), the first term on the right-hand side
of (11) becomes hABi [6]. If A is ergodic, i.e., W finite, (9)
requires RA�t � 1� � 0, which we call the irreversibility
of A. It is possible that W � 0 or 1 while RA�t � 1� � 0
[9]. Thus irreversibility alone does not ensure ergodicity.
That is why irreversibility is a necessary but not sufficient
condition for ergodicity. If A ceases to be irreversible (for
example, as the critical region is approached), it ceases to
be ergodic. It underlines the importance of determining
irreversibility from a general consideration.

4. Irreversibility.—We shall now prove that the irrever-
sibility of A in a Hermitian model is a general property of
A. The proof is by the recurrence relations method, now
well established [8,10,11]. We shall state it without proof.
Let S denote an inner product space of self-adjoint opera-
tors A and B, having the properties among others: �A;B� �
�B;A� and �A;OB� � �O�A;B�, whereO is an operator in S
and �means Hermitian conjugation. Let A�t� be a vector in
S, where A�t� � eiHtAe�iHt, A � A�t � 0�, and @ � 1. If
H is Hermitian, the norm of A�t� in S is an invariant of the
time t:

 �A�t�; A�t�� � �A; A�: (12)

It means that as t evolves, A�t� can change only its
directions in S. It may be expressed by an orthogonal
expansion,

 A�t� �
Xd�1

��0

a��t�f�; (13)

where ff�g is a complete set of basis vectors that span S of
d dimensions, i.e., �f�; f�0 � � 0 if �0 � �, and a��t� is the
magnitude of the projection of A�t� onto f� at t, hence a
real function of t. Here d may be finite or infinite. Let t
evolve from t � 0. Then it is natural to choose f0 � A�t �
0� � A. The others we construct by a recurrence relation,
see below. With this choice, a0�t� � �A�t�; A�=�A; A� �
RA�t�=RA�0� � rA�t�. Thus, a��0� � 1 if � � 0 and � 0
if otherwise (boundary condition). By Schwarz inequality,
ja0�t�j � 1. By (12) and (13), we obtain the Bessel equality
(BE):

 

Xd�1

��0

	a0��t�

2 � 1; (14)

where a00 � a0 and a0� �
�������������������������
�1�2 . . . ��

p
a�, where �� �

�f�; f��=�f��1; f��1�, � � 1:2; . . . d� 1. By Schwarz in-
equality, ja0��t�j � 1, also implied by BE.

Now we realize S by (11) and call it S0 [12]. It is still an
inner product space, but is H specific meaning H depen-

dent. In S0, ff�g can be constructed starting with f0 � A by
a recurrence relation known as RR1, which is H specific
[13]. Thus, ��’s are also H specific. RR1 implies a recur-
rence relation for fa�g, known as RR2 [8]:
 

�1a1 � �d=dta0 (15a)

���1a��1 � �d=dt a� � a��1; � � 1; 2; . . . d� 1:

(15b)

RR2 (15a) and (15b) itself is realized if the values of
��’s are specified. The solutions for fa�g are per force H
specific and thus unique. They have the following impor-
tant properties: (a) linearly independent if 0< t <1;
(b) bounded and analytic everywhere in real t. Solutions
for fa�g which meet these properties are termed admis-
sibles. An admissible satisfies BE collectively and Schwarz
inequality individually.

If d <1, a0�t� lt1� � a0�t�, l � 1; 2; . . . , for some t1
[14]. Thus a0�t � 1� � 0, not irreversible. Henceforth we
consider d! 1 only, replacing index � by n. If t! 0,
a0 ! 1 (see the boundary condition). As t increases, the
amplitude may decrease. Let t! 1. We assume
(Assumption A) that for all admissibles, d=dt a0�t � 1� �
0. Assumption A is justified by property b: there are no
singularities in a0 as t! 1. Since ja0�t � 1�j � 1, it
must reach a limiting value asymptotically with zero slope.

Then, by Assumption A on (15a), a1�t � 1� � 0. By
(15b) with � � n � 1, �2a2 � �d=dta1 � a0 � a0 since,
if a1�1� � 0, d=dta1�1� � 0. If � � n � 2, �3a3 �
�d=dt a2 � a1 � 0 since d=dta2 � d=dta0=�2 � 0. A
continuation shows that all odd ones are zero and all
even ones are connected: as t! 1, for n � 1; 2; . . . ,
 

a2n�1 � 0; (16a)

�2�4 . . . �2na2n � a0: (16b)

When (16a) and (16b) are substituted in BE (14), we
obtain (now writing r for a0): jr�1�j � 1=

����
K
p

, where

 K � 1� �1=�2 � �1�3=�2�4 � . . .

� ��1�3 . . . �2n�1�=��2�4 . . . �2n� � . . .

� 1�
X1
n�1

k2n: (17)

If the K series converges to a finite number K0 say,
jr�1�j � 1=

������
K0

p
> 0, hence not irreversible. If it diverges,

r�1� � 0 and irreversible. We showed that W � 1=k2n,
n! 1 [4]. The very ‘‘last’’ term in the K series is thus
1=W [15]. If A is ergodic, i.e., its W is finite, its K series
(whose k1 is finite) must diverge. It is necessarily irrevers-
ible. If nonergodic by W � 0, the K series (whose k1 �
1) surely diverges and is irreversible. If nonergodic by
W � 1, its K series (whose k1 � 0) may or may not
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diverge. This is all consistent with the ergodic condition.
We now show that jr�1�j can be determined independently.

First, consider A in a system of one interaction constant,
e.g., J (exchange constant), termed homogeneous. For
simplicity, we look at a delocalization process [16] on a
lattice, rather than in a fluid, although the outcome is
basically similar, in some cases even isomorphic [7(a)].
Let it be a linear chain of spins coupled between nn’s by an
exchange constant J (e.g., XY model), where the spin sites
are labeled 0; 1; 2; . . .N, N ! 1. If the spin at site 0 is
perturbed by an external means, the perturbation energy
will spread down the chain, a process termed the delocal-
ization of the perturbation energy. Roughly put, �n mea-
sures the delocalization of the perturbation energy from
site n� 1 to site n, having its process started at site 0
[7(b)]. It may be given as: �n � J2g�n�, where g�n� has H
specific details. A known g�n�means a specific shape of S0

and a corresponding admissible [10,11].
The site-to-site delocalization does not end since d!

1. (If d <1, �d � 0, resulting in a periodic admissible
[14].) For the purpose of (17), we actually do not have to
know the precise form of g�n�. We need to know only the
ratio or rate �n=�n�1 as n!1, with which to deter-
mine whether the K series diverges, not how it diverges.
As n! 1 (i.e., sufficiently far removed from the site of
the perturbation), the rate in a homogeneous system should
become n independent. Since the delocalization of the
perturbation energy is continuous in a linear homogeneous
system, the rate should approach a constant. That is,
	�n= �n�1 � �n�1=�n�2
n!1 � 0. Thus we assume
(Assumption B) that if site n is sufficiently far removed
from site 0,

 �n=�n�1jn!1 � 1� 0�1=n�: (18)

To justify it fully we would need to compare fn�1 versus
fn for a given H [7(b)]. There is now a fairly large body of
exactly known g�n�’s for a variety of homogeneous lattice
and fluid models, both quantum and classical [7,10,11]. We
list a few elementary ones: g�n� � 1 (hypersphere),
g�n� � n or n2 (hyperellipsoid), g�n� � 4n2=�4n2 � 1�
(asymptotically hypersphere), etc. They all satisfy As-
sumption B. For a homogeneous system, by Assumption
B: K � d=2, d!1, where d is the dimensions of S0. Thus
the K series diverges (as already forecast by k1) and, by
(17), r�1� � 0. It is irreversible. For all Hermitian homo-
geneous systems belonging to S0 of d � 1, we con-
clude by Assumption B that irreversibility is a general
property of A [17–19]. All known admissibles show this
property without exception, e.g., secht, exp�t2=2, J0�2t�,
J1�2t�=t, j0�2t� (sph. Bessel), M�s; 1=2;�t2=4� (Kummer)
[7,10,11].

Assumption B can break down if �1 ! 0 (others finite)
in some domains (critical region, Brownian limit). Then,
k2n ! 0 for every n. See (17). Thus K ! K0 � 1 and
jr�1�j � 1. When these domains are entered, irreversibil-

ity is lost [4]. If irreversibility is lost, ergodicity is also lost.
See (9). Thus any analysis of critical behavior or Brownian
motion [20] which assumes ergodicity raises questions.

An inhomogeneous system has two or more interaction
constants, e.g., Jx and Jy (anisotropic XY model), J and B
(transverse Ising model). For a two-constant system we
have a new parameter � say, e.g., � � �Jy=Jx�2 or �B=J�2,
which thus defines two regions: I (� < 1) and II (� > 1),
separated by � � 1, a homogeneous point. Assumption B
would not apply here. Instead of another, we consider
a simple structure, realized exactly in a two-constant
model: �2n�1 � � and �2n � 1, n � 1; 2 . . . , and 0<
�<1. By (17)

 K � 1� �� �2 � . . .� �n � . . . : (19)

If � < 1 (I), K converges to K0 � 1=�1� �� and
jr�1�j �

����������������
�1� ��

p
> 0. If � > 1 (II), K diverges and

r�1� � 0. By W � 1=k2n, n! 1, where k2n � �n, W �
1 in I and W � 0 in II. In both regions it is not ergodic.
If � � 1 (homogeneous pt.), it gives a hyperspherical S0,
for which we already know r�t� � J1�2t�=t [21]. We see
that r�1� � 0 (irreversible) and W �

R
1
0 J1�2t�dt=t � 1

(ergodic). They are precisely borne out by the K series:
when � � 1, K � 1 (Assumption B satisfied) and W �
1=k1 � 1.

5. Concluding remarks.—Ergodicity is represented by
just one term in the series whereas irreversibility by the
entire series [15]. Thus the two are not one to one. This
nonisomorphic relationship is the reason why irreversibil-
ity can only be a necessary condition for ergodicity.

In a homogeneous system, irreversibility is a rule except
in anomalous domains where Assumption B breaks down.
In an inhomogeneous system the irreversibility exists if
� > 1 and does not if � < 1. Now the value of � needs not
always come fixed. It could be varied by adjusting the
strengths of the interaction constants (e.g., by changing B
while fixing J in the transverse Ising model). Thus by
exercising this extra degree of freedom, one could create
or destroy the irreversibility. The system itself, however,
remains nonergodic whether the irreversibility exists or
not.
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