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We present a scheme of fault-tolerant quantum computation for a local architecture in two spatial
dimensions. The error threshold is 0.75% for each source in an error model with preparation, gate, storage,
and measurement errors.
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Quantum computation is fragile. Exotic quantum states
are created in the process, exhibiting entanglement among
large numbers of particles across macroscopic distances. In
realistic physical systems, decoherence acts to transform
these states into more classical ones, compromising their
computational power. Fortunately, the effects of decoher-
ence can be counteracted by quantum error correction [1].
In fact, arbitrarily large quantum computations can be
performed with arbitrary accuracy, provided the error level
of the elementary components of the quantum computer is
below a certain threshold. This is guaranteed by the thresh-
old theorem for quantum computation [2–5].

Now that the threshold theorem has been established, it
is important to devise methods for error correction which
yield a high threshold, are robust against variations of the
error model, and can be implemented with small opera-
tional overhead. An additional desideratum is a simple
architecture for the quantum computer, requiring no
long-range interaction, for example.

Recently, a threshold estimate of 3� 10�2 per operation
has been obtained for a method using postselection [6]. An
alternative scheme with high threshold combines topologi-
cal quantum computation with state purification [7]. (See
also [8].) In that approach, a subset of the universal gates
are assumed to be error free. Pure topological quantum
computation ideally requires no error correction but often
picks up a comparable polylogarithmic overhead [9] in the
Solovay-Kitaev construction for approximating single-
qubit and two-qubit gates (cf. [10]). Fault tolerance is
more difficult to achieve in architectures where each qubit
can only interact with other qubits in its immediate neigh-
borhood. A fault tolerance threshold for a two-dimensional
lattice of qubits with only local and nearest-neighbor gates
is 1:9� 10�5 [11].

In this Letter, we present a scheme for fault-tolerant
universal quantum computation on a two-dimensional
lattice of qubits, requiring only a nearest-neighbor
translation-invariant Ising interaction and single-qubit
preparation and measurement. A fault tolerance threshold
of 7:5� 10�3 for each error source is presented, with
moderate resource scaling. This scheme is best suited for
implementation with massive qubits where geometric con-

straints naturally play a role, such as cold atoms in optical
lattices [12] or two-dimensional ion traps [13].

The presented scheme integrates methods of topological
quantum computation, specifically the toric code [14], and
magic state distillation [15] into the one-way quantum
computer (QCC) [16] on cluster states. By employing
magic state distillation we improve the error threshold
significantly beyond [17], with the threshold value and
overhead scaling now set by the topological error correc-
tion. In this regard, we would like to emphasize that the
three-dimensional cluster state is an intrinsically fault-
tolerant substrate for quantum computation [17]. From
the viewpoint of implementation it is desirable to reduce
the spatial dimensionality of the scheme from three to two.
To achieve this we turn the QCC into a sequential scheme in
which the cluster state is created slice by slice.

This Letter is organized as follows. First, we construct
fault-tolerant universal gates for the QCC in three spatial
dimensions. (See Fig. 1 for a CNOT gate.) Next, we perform
the mapping to two dimensions. Finally, we present our
error model and work out its threshold value.

We consider a cluster state j�iL on a lattice L with
elementary cell as displayed in Fig. 2(a). Qubits are located
at the center of faces and edges of L. The lattice L is
subdivided into three regions V, D, and S. Each region has

 

FIG. 1 (color online). The CNOT gate ��X�c;t (c: control; t:
target) formed by topologically entangled lattice defects. Each
pair of defects carries an encoded qubit. Defects exist as primal
[dark gray (blue)] and dual (black), and are created by local
measurement. The primal correlation surface [light gray (light
blue)] shown here converts an incoming Pauli operator Zt into an
outgoing Zt � Zc, as required for a CNOT gate.
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its purpose, shape, and specific measurement basis for its
qubits. The qubits in V are measured in the X basis, the
qubits inD in the Z basis, and the qubits in S in either the Y
basis or the eigenbasis �X� Y�=

���
2
p

. V fills up most of the
cluster. D is composed of thick linelike structures, named
defects. S is composed of well-separated qubit locations
interspersed among the defects. As described in greater
detail below, the cluster region V provides topological
error correction, while regions D and S specify the
Clifford and non-Clifford parts of a quantum algorithm,
respectively.

We can break up this measurement pattern into gate
simulations by establishing the following correspondence:
quantum gates$ quantum correlations $ surfaces, as il-
lustrated for the CNOT gate in Fig. 1. The first part of this
correspondence has been established in [16]. For the sec-
ond part homology comes into play. The correlations of
j�iL (i.e., the stabilizers) can be identified with 2-chains
(surfaces) in L, while errors map to 1-chains (lines).
Homological equivalence of the chains implies physical
equivalence of the corresponding operators [17]. This cor-
respondence is key to the presented scheme. Gates are
specified by a set of surfaces with input and output bounda-
ries, and syndrome measurements correspond to closed
surfaces (having no boundary).

Formally, L is regarded as a chain complex, L �
fC3; C2; C1; C0g. It has a dual �L � f �C3; �C2; �C1; �C0g whose
cubes �c3 2 �C3 map to sites c0 2 C0 of L, whose faces
�c2 2 �C2 map to edges c1 2 C1 of L, etc. The chains have
coefficients in Z2. One may switch back and forth between
L and �L by a duality transformation �� �. L; �L are
equipped with a boundary map @, where @ 	 @ � 0.

Operators may be associated with chains as follows.
Suppose that for each qubit location a in a chain c, a 2
fcg, there exists an operator �a, with 
�a;�b� � 0 for all a,
b 2 fcg. Then, we define ��c� :�

Q
a2fcg�a. Cluster state

correlations are associated with 2-chains. Specifically, all
elements in the cluster state stabilizer take the form
K�c2�K� �c2� with c2 2 C2, �c2 2 �C2, and K�c2� �
X�c2�Z�@c2�, K� �c2� � X� �c2�Z�@ �c2�. Only those stabilizer
elements compatible with the local measurement scheme

are useful for information processing. In particular, they
need to commute with the measurements in V and D,

 
K�c2�K� �c2�; Xa� � 0; a 2 V;


K�c2�K� �c2�; Zb� � 0; b 2 D:
(1)

This condition may again be expressed in terms of the
chains c2; �c2 directly, which we will do below.

Topological error correction in V.—Inside V the con-
straint (1) implies @c2 � 0, @ �c2 � 0. In particular, these
conditions are obeyed for c2 � @c3, �c2 � @ �c3. For each
elementary cube q 2 C3, �q 2 �C3 the cluster stabilizers
K�@q�, K�@ �q� can be measured by the local X measure-
ment and classical postprocessing.

The optimal error correction procedure for V can be
mapped to a model from classical statistical mechanics,
the random plaquette Z2-gauge model in three dimensions
[18], for which a fault tolerance threshold of 3:3� 10�2

for local noise has been found in numerical simulations
[19]. (See also [20].) Here we use the minimum weight
chain matching algorithm [21] for error correction. It
yields a slightly smaller threshold of 2:9� 10�2 [22] but
is computationally efficient. Various error sources eat away
at this 3% error budget.

Cluster states and surface codes.—The connection be-
tween a 2D cluster state and a surface code [23] is illus-
trated in Fig. 2(b). The extra spatial dimension in a 3D
cluster state allows us to evolve coded states in ‘‘simulated
time.’’ The number of qubits which can be encoded in a
surface code depends solely on the surface topology. Here
we consider a plane with pairs of either electric or mag-
netic holes; see Fig. 2(c). A magnetic hole is a plaquette f
where the associated stabilizer generator S��f� � Z�@f� is
not enforced on the code space, and an electric hole is a site
s where the associated stabilizer S��s� � X�@#s� is not
enforced on the code space, where ‘‘#’’ denotes the duality
transformation in 2D. Each hole is the intersection of a
defect strand with a constant-time slice.

A pair of holes supports a qubit. For a pair of magnetic
holes f; f0, the encoded spin flip operator is �Xm � X� �c1�,
with f@ �c1g � f

#f; #f0g, and the encoded phase flip operator
is �Zm � Z�c1�, with c1 � @f or c1 � @f0. The operator
Z�@f� @f0� is in the code stabilizer. For a pair of electric
holes s; s0 we have �Xe � X� �c01�, with �c01 � @#s, �Ze �
Z�c1�, with f@c1g � fs; s

0g, and X�@#s� @#s0� is in the
code stabilizer.

Quantum logic.—The CNOT gate is realized by linking
primal and dual defects as displayed in Fig. 1. To explain
the functioning of the gate we refer to Theorem 1 of [16].
We consider a block shaped cluster C where the elementary
cell of Fig. 2(a) is repeated an integer number of times
along each direction. One of these directions is singled out
as simulated time. The two perpendicular slices of the
cluster at the earliest and latest times contain the supports
I and O for the encoded input and output qubits, respec-
tively, with I, O  fC1g.

 

FIG. 2 (color online). Lattice definitions. (a) Elementary cell
of the cluster lattice L. 1-chains of L (dashed lines), and graph
edges (solid lines). (b) A surface code obtained from a 2D cluster
state by local X measurements. (c) A pair of electric (e) or
magnetic (m) holes in the code plane each support an encoded
qubit. �Ze=m and �Xe=m denote the encoded Pauli operators Z and
X, respectively.
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The set M on which the measurement pattern is defined
(cf. Theorem 1 of [16]) is composed of V and D, M �
V [D. Because of the presence of a primal lattice L and a
dual lattice �L, it is convenient to subdivide the sets V and
D into primal and dual subsets. Specifically, V � Vp [ Vd,
with Vp  fC2g, Vd  f �C2g, and D � Dp [Dd, with
Dp  fC1g, Dd  f �C1g.

With these definitions, we can now prove the function-
ing of the CNOT gate in Fig. 1. The gate cluster C contains
the regions Vp, Vd, Dp, Dd, I, and O. In this setting,
condition (1) implies for the correlation surfaces:

 fc2g  Vp; f@c2g  Dp [ I [O;

f �c2g  Vd [ I [O; f@ �c2g  Dd:
(2)

One such (primal) correlation surface is depicted in
Fig. 1. The corresponding stabilizer of j�iC, after mea-
surement of the qubits in M � V [D, implies a stabilizer
� �Zet;I �Zec;O �Zet;O � � �Zet;I��X�c;t �Zet;O��X�yc;t for j�iIO. Three
similar surfaces imply the stabilizer elements � �Xet;I �Xet;O,
� �Zec;I �Zec;O, and � �Xec;I �Xec;O �Xet;O for j�iIO. Theorem 1 of
[16] is applied with U � ��X�c;t. �

Further elements of a fault-tolerant QCC computation
are shown in Fig. 3. Fault-tolerant preparation of encoded
X and Z eigenstates for the electric qubits are displayed in
Figs. 3(a) and 3(b), which can be reversed to denote
measurements. These operations, together with the CNOT

gate of Fig. 1, comprise the set of topologically protected
gates. Figure 3(c) shows the creation of a Bell pair between
a bare S qubit and a qubit encoded with a surface code
(electric). The shown correlation surfaces c2; �c2 are such
that fc2g  Vp, f@c2g  Dp [ S [O, f �c2g  Vd [ S [O,
f@ �c2g � ;. The corresponding stabilizers K�c2�; K� �c2� im-
ply, after local measurement of the qubits in V and D, the
stabilizer generators �ZS �ZO, �XS �XO for the state j�iSO.
Thus, j�iSO is a Bell state with the qubit located on O
being encoded. Measurement of the bare qubit on S in the
eigenbasis of Y or �X� Y�=

���
2
p

yields on O an encoded
state j �Yi � j�0i � ij�1i or j �Ai � j�0i � ei�=4j�1i, respectively.

These states are noisy and therefore subsequently purified
via magic state distillation [15]. Finally, they are used in
teleportation circuits (see Fig. 10.25 of [24]) to generate the
fault-tolerant gates exp�i�=4 �X� and exp�i�=8 �Z�. This
completes the universal fault-tolerant gate set.

Mapping to the 2D lattice.—The dimensionality of the
spatial layout can be reduced by one if the cluster is created
slice by slice. That is, we convert the axis of simulated
time—introduced as a means to explain the connection
with surface codes—into real time.

Cluster qubits located on timelike edges of L or �L be-
come syndrome qubits, which are periodically measured.
Qubits on spacelike edges become code qubits. Timelike
oriented ��Z� gates are mapped to Hadamard gates, while
spacelike oriented ��Z� gates remain unchanged.

The temporal order of operations is displayed in Fig. 4.
Note that every qubit is acted upon by an operation in every
time step. The mapping to the two-dimensional structure
has no impact on information processing. In particular, the
error correction procedure is still the same as in fault-
tolerant quantum memory with the toric code.

Error model and threshold.—There are two separate
thresholds, one for the Clifford operations and one for
the non-Clifford operations. The former threshold derives
from topological error correction and the latter from magic
state distillation. The overall threshold is set by the smaller
of the two.

Mapping to a single-layer 2D structure slightly modifies
the effective error model on the lattices L and �L, as com-
pared to [17]. Specifically, we assume the following: (i) Er-
roneous operations are modeled by perfect operations pre-
ceded or followed by a partially depolarizing single-quibit
or two-qubit error channel T1��1�p1�
I��p1=3�
X��

Y��
Z��, T2��1�p2�
I� �p2=15�
XaXb������

ZaZb��. The error sources are (a) the preparation of the
individual qubit states j�i (error probability pP), (b) the
Hadamard gates (error probability p1), (c) the ��Z� gates

 

FIG. 3 (color online). Remaining gates for universal fault-
tolerant computation. The relevant correlation surfaces are
shown in light gray (light blue) and dark gray. Replace
Out(put) by In(put) for a measurement. (a) Preparation of a �Z
eigenstate for an electric qubit. (b) Preparation of an �X eigenstate
for an electric qubit. (c) Creation of a Bell pair among a bare S
qubit and an encoded qubit.

 

FIG. 4. Elementary cell of the 2D lattice. Temporal order of
operations in V: The labels on the edges denote the time steps at
which the corresponding ��Z� gate is performed. The labels at
the syndrome vertices (�) denote measurement and (re)prepara-
tion times [tM; tP], and the labels at the code vertices (�) denote
times for Hadamard gates (tH; t0H). The pattern is periodic in
space, and in time with period six.
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(error probability p2), (d) measurement (error probability
pM). (ii) Classical syndrome processing is instantaneous.

When calculating a threshold, we assume that all error
sources are equally strong, p1 � p2 � pM � pP :� p.
Storage errors need not be considered because no qubit is
ever idle between preparation and measurement. This
model encompasses realistic error sources such as local
inhomogeneity of electric and magnetic fields, fluctuations
in laser intensity, and imperfect photodetectors.

The topological threshold for each physical source is
estimated by numerical simulations to be

 pc � 7:5� 10�3: (3)

A similar threshold persists under modifications of the
error model such as higher weight errors [17].

Regarding the distillation threshold, the residual error �l
at level l undergoes the recursion �l ! �l�1 � 35�3

l (to
leading order) [15]. The initial distillation error �0 arises
through the effective error on an S qubit, with �0 � 6p.
The distillation threshold pc for each physical error source
is then pc � 1=6

������
35
p

� 2:8� 10�2. The purification
threshold is much larger than the topological threshold,
and therefore the overall threshold for fault-tolerant QCC

computation is given by Eq. (3).
Overhead.—Fault tolerance leads to a polylogarithmic

increase of operational resources. Both the overheads in
topological error correction and in magic state distillation
are described by a characteristic exponent: �top � 3 and
�ms � log315. The larger one dominates the resource scal-
ing. Given bare circuit size S, the encoded circuit size S0

scales as S0 � S log3S.
Conclusion.—We have presented a scheme of fault-

tolerant quantum computation in a two-dimensional local
architecture with high error threshold and moderate over-
head in resource scaling. The threshold of 7:5� 10�3 is the
highest known for a local architecture. Our scheme only
requires local and translation-invariant nearest-neighbor
interaction in a single-layer two-dimensional lattice.
Small-scale experimental devices may be realized in opti-
cal lattices, segmented ion traps, or arrays of quantum dots
or superconducting qubits where short-range interaction is
preferred.
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