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We show that quantum and thermal fluctuations in spin-2 Bose-Einstein condensates lift the accidental
degeneracy of the mean-field phase diagram. Fluctuations select the uniaxial (square biaxial) nematic state
for scattering lengths a4 > a2 (a4 < a2). Paradoxically, the order is stronger at higher temperatures. For
spin-2 87Rb and 23Na, a continuous Ising-type transition is predicted on raising the magnetic field, from a
fluctuation stabilized uniaxial state to a field stabilized square biaxial order state. This is a promising
experimental system to realize the ‘‘order-by-disorder’’ phenomenon.
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The ground-state properties as well as the dynamics of
spinor Bose-Einstein condensates have been the subject of
many experimental studies over the past decade (see, for
instance, [1–5]). The spin degree of freedom introduces a
rich variety of spin ordered superfluids [6–8] and the
interaction between spin order and superfluidity has several
interesting consequences, for example, topological defects
of the magnetic texture that trap vorticity [9]. The precise
nature of the spin order realized in the ground state de-
pends on the spin-dependent two body interaction between
atoms, parametrized by the scattering length in different
total-spin channels. Usually, a specification of these scat-
tering lengths uniquely fixes the spin configuration of the
condensate. An interesting exception occurs in the case of
spin-2 atoms. Here, depending on the relative values of the
scattering lengths in the total-spin 0, 2, and 4 channels
(a0; a2; a4), one obtains either a ferromagnetic state, with a
net spin moment, a cyclic (or ‘‘tetrahedratic’’) state, which
breaks time reversal symmetry but does not have a net
moment, or a nematic state which preserves time reversal
invariance. In contrast to the first two states, the nematic
state requires specifying an additional parameter for its
description. To visualize the parameter geometrically, the
state may be represented by its ‘‘reciprocal spinor,’’ a
configuration of four points. The nematic states have the
symmetry of a rectangle, and the additional parameter � is
related to the aspect ratio of this rectangle. This parameter
is not fixed by the two body interactions, and a manifold of
accidentally degenerate states remains at this level [10].

We show here that this degeneracy is lifted by superfluid
phonons, whose velocities depend on the precise nematic
state being realized. In the low temperature regime, the
zero point energies of the superfluid phonons leads to an
energy splitting between different nematic states. This is
reminiscent of the Casimir force arising from photon zero
point energies [11]; here the ‘‘force’’ leads to a splitting of
nematic states. At higher temperatures, thermal fluctua-
tions lift the degeneracy in the free energy via entropic
effects. Remarkably, we are able to derive closed form
analytic expressions for this splitting in both these limits,

yielding the phase diagram shown in Fig. 1. Fluctuations
select the two high symmetry states, the uniaxial nematic
(with the symmetry of a line) and the square biaxial
nematic (with the symmetry of the square) in the parts of
the phase diagram shown. The latter is an elusive phase
with a non-Abelian homotopy group, that was long sought
after in liquid crystal systems, but appears naturally here.
Two experimentally relevant systems, spin-2 87Rb and
23Na, are also shown on this phase diagram. They are
expected to realize the uniaxial nematic phase. Bose con-
densates of spin-2 87Rb have been realized [2] and for the
parameters of that experiment we find that the splitting
between nematic states from quantum fluctuations to be of
order 0.3 pK while the free-energy splitting from thermal
fluctuations can be as large as 6 pK. The latter should be
readily observable in experiments with careful control over
the quadratic Zeeman splitting which competes with this
fluctuation mechanism and prefers a square nematic state
oriented in a plane orthogonal to the field. The energy
splitting per atom is much lower than the temperature,
but it is the total energy that determines the ground state.
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FIG. 1 (color online). The phase diagram for a spin-2 spinor
condensate. The dashed line corresponds to the additional phase
boundary dividing the nematic phase into two phases, a uniaxial
nematic phase and a square nematic phase.
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Spin-dependent energies smaller than T are known to have
important effects on ground states and dynamics [1,12].

An unusual feature of the fluctuation selection is that the
order is stronger at higher temperatures (sufficiently far
below the transition temperature), in contrast to one’s
intuitive expectation of thermal effects favoring disorder.
Consequently, for sufficiently weak background fields, one
predicts a transition on warming the system in the super-
fluid state, as fluctuation induced ordering overpowers the
external field. Both the quantum and the thermal effects are
expected to be stronger in the 23Na. While such ‘‘order-by-
disorder’’ mechanisms have been widely discussed in the
theory of frustrated magnetism [13,14], we are not aware of
an unambiguous manifestation of this effect in experi-
ments. The spin-2 condensates seem like a promising
system to observe this intriguing effect.

Mean-field analysis.—In the dilute limit, spin-2 bosons
will interact with the pair potential V�r1 � r2� � ��r1 �
r2��g0P 0 � g2P 2 � g4P 4� where gF � 4�@2aF=m and
P F projects into the total-spin F state. Such a pair potential
leads to the interaction Hamiltonian which can be conven-
iently expressed as

 H int�
Z
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j yF j2�

�
2
j y tj2: (1)

where  is a five component vector operator whose com-
ponent  m�r� destroys a boson in spin state Fz � m at
position r. Here,  t is the time reversal of  , namely,
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7 �g2 � g4�. The total Hamilton-

ian is then H �H 0 �H int, where the free part is
H 0 �

R
d3r�@2=2m�jr j2 ��� y �.

The mean-field phase diagram for such a model is shown
in Fig. 1 [8]. The various extrema correspond to the ferro-
magnetic, nematic, and tetrahedratic phases. We will focus
on the region (� < 4�; 0) where the nematic phase is
stabilized. The general nematic state, up to an overall
phase, is �� � �

sin���
2
p ; 0; cos�; 0; sin���

2
p � and requires specifi-

cation of the additional parameter �. As � is varied, the
rectangle moves through each of the three planes xy, yz, xz.
� � n�

3 corresponds to a uniaxial along an axis, while � �
�n3�

1
2�� corresponds to a square in one of the coordinate

planes. At this level, the different nematic states are degen-
erate but, as demonstrated below, fluctuations will remove
this accidental degeneracy in the nematic phase, producing
the dashed phase boundary at a2 � a4 (� � 0). Along this
phase boundary, however, the Hamiltonian possesses
SO(5) symmetry and hence the various nematic phases
are exactly degenerate. The mean-field energy density in
the nematic phase is E0=V � ��

2=2��� ��, while the
chemical potential itself is given by �������n0, where
n0 is the atom density. We now analyze the harmonic
fluctuations about the different nematic ground states.

Fluctuations.—We follow the standard Bogoliubov the-
ory of the weakly interacting Bose gas to derive the spec-

trum of fluctuations. Consider decomposing the field
operator into a dominant c-number piece, the mean-field
expectation value, and a smaller fluctuation piece  �r� ������
n0
p

�� � ���r�. We expand the Hamiltonian to quadratic
order in the fluctuations (linear terms vanish on choosing
the mean-field solution) and diagonalize the resulting
Bogoliubov Hamiltonian H B. This is aided by defining
new canonical bosons: b1 � �

i��
2
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� 1��
2
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1��
2
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2
p ��iei�f�� iei�f��.

The Bogoliubov Hamiltonian assumes a particularly sim-
ple form in these variables. Define velocities vj via mv2

j �
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3 �� (j � 1; 2; 3), or
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Also let mv2
4 � ��� ��n0, mv2

5 � ��n0. Then we have
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We see that these modes are completely decoupled and
readily diagonalized by the Bogoliubov transformation,
having spectra of the form !j � k

��������������������������������
v2
j � @

2k2=4m2
q

.
Physically, for 1 	 j 	 3, the bj modes are connected to
spin rotations about the three coordinate axes. The p
boson generates phase fluctuations of the condensate
since the associated wave speed v4 involves the compressi-
bility n0��� ��. Finally the q mode corresponds to fluc-
tuations of the �. Note, in the long wavelength limit all
these modes have a linear dispersion. However, for a
generic nematic superfluid, only the first four are
Goldstone modes of the broken spin and phase symmetry;
the fifth will actually acquire a gap once the degeneracy
between the different � configurations is removed. The
contribution of these modes to the free energy is readily
calculated. However, only the dispersion of the spin modes
depends on the nematic parameter � and will be respon-
sible for lifting the accidental degeneracy. The contribution
from these modes �F���=V � T

P3
n�1

R
�d3k=�2��3�


logf2 sinh�@!n�k�=2T�g, where V is the volume, will be
discussed below.

Order by disorder.—Before evaluating the free en-
ergy, we make some general observations arising from
symmetry. For this purpose the nematic region of the
phase diagram is best described in terms of the variables
(a0 � a4), the x axis in Fig. 1, and the ratio 	 � �10=7�

��a4 � a2�=�a0 � a4��. The nematic region corresponds to
�a0 � a4�< 0 and j	j< 1. Equation (2) for the velocities
shows that the degeneracy remains unresolved along the
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line 	 � 0, which is also the phase boundary for the full
Hamiltonian due to the SO(5) symmetry. The symmetry
breaking grows on moving away from this axis, but has
opposite effects on either side of this line. Formally, the
transformation 	! �	,�! �� �=2 is an approximate
symmetry.

At zero temperature, the free energy reduces to the
contribution to the ground-state energy for different ne-
matic states from the zero point motion of the harmonic
modes. Remarkably, this energy splitting �E��� may be
evaluated in closed form up to an overall constant [15]:

 

�E���
V

�
8m4

15�2
@

3

X3

j�1

v5
j

�
8@2

15�2m

�
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5

�
5=2
g5=2��;	�; (4)

where it is convenient to define the series of functions:
gm��;	� �

P3
j�1�1� 	 cos�2�� 2�j

3 ��
m. The ground

state is the one with the lowest combination of velocities,
and turns out to be the square biaxial state (� � �=2) for
	> 0, and the uniaxial state for 	< 0 (� � 0). The latter
is relevant to spin-2 87Rb and 23Na, which both are be-
lieved to have 	 � �1 [17].

At finite temperatures, thermal fluctuations are much
more effective at lifting this degeneracy; the nematic phase
with the larger population of thermal excitations will be
entropically favored. While this may be evaluated numeri-
cally, there is a broad range of temperatures Tc � T �
max�mv2

i � where it greatly simplifies. The lower limit is a
rather small scale, related to the magnetic energy and about
1 nK for 87Rb in [2]. In this limit, the linearly dispersing
modes obey equipartition, and the leading �-dependent
term in the free energy is [18]
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3
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2
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5
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3=2
g3=2��;	�: (5)

On evaluating this expression, thermal fluctuations are
found to lead to the same ground states as quantum fluc-
tuations. A plot of the free-energy variation with � for	 �
�1 is in the top curve of Fig. 2.

At higher temperatures the depletion of the condensate
becomes important. As the temperature is increased, the
difference in free energies initially grows due to increased
thermal fluctuations. Near Tc, the free-energy splitting
drops back to zero, assuming a continuous transition.
These features can be seen in Fig. 3, calculated provision-
ally for the condensate fraction which is valid for non-
interacting particles in a trap, n�T� � n0�1� �T=Tc�3�,
with the parameters of 87Rb in [2].

These results may be caricatured by an effective Landau
theory, where sixth order terms are generated by fluctua-
tions. While a full discussion of all such terms is under-

taken elsewhere [16], we note here that writing the five
component order parameter as a symmetric traceless ma-
trix 
 [19] allows for a sixth order term 32A

3 tr�
3

3� in the
free energy. This term, when evaluated in the nematic
subspace yields Aj
0j

6 cos6�, where 
0 is the magnitude
of the order parameter. Clearly, if A> 0, then the free
energy is minimized by the square biaxial state � �
�=2, �=6, 5�=6, while if A < 0, then the free energy is
minimized by the uniaxial state � � 0, �=3, 2�=3. This
sixth order term vanishes rapidly on approaching the tran-
sition, accounting for the near degeneracy of nematic
ordered states near this point. Finally, it may be recalled
that biaxial nematics are rather difficult to obtain in liquid
crystal systems. Within Landau theory this is explained by
the presence of a cubic term in the free energy B tr�
3

R�
when the nematic order parameter is a real symmetric
traceless matrix. This can be shown to favor the uniaxial
state regardless of the sign of B. However, in the spinor
condensate, the fact that the spin-2 field also carries a
charge quantum number implies the absence of such a
term (it is a complex symmetric matrix with phase sym-
metry). Hence biaxial nematics may be realized, and would
naturally occur in the 	> 0 part of the nematic phase
region. In addition to the topological defects with non-
Abelian homotopy for the general biaxial nematic, the
square biaxial nematic realized here also has half super-
fluid vortices bound to a spin defect.
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Experimental prospects.—Magnetic fields make the
phase diagram more complex because the splitting due
to fluctuations receives competition from the quadratic
Zeeman energy Hqz � �cB2

R
d3x yF2

z [20], which
favors the square uniaxial state. For weak fields the ne-
matic axis drops into the xy plane � � �=3, 2�=3 because

jFx � 0i � �
��
3
8

q
; 0; 1

2 ; 0;
��
3
8

q
� has lower Hqz than jFz � 0i.

On increasing the field, the state continuously approaches
the square state � � �=2. In [2] a 50–50 split between
atoms with Fz � �2 was observed consistent with a
square state; we believe this to be due to the relatively
large background field reported in the experiments that
overcomes the order-by-disorder effect. To observe the
latter effect, a lower magnetic field as estimated below is
needed. A possible way to observe the uniaxial to square
state transition is by measuring the fraction of atoms with
Fz � 0 along a quantization axis parallel to the magnetic
field as it drops from 25% for uniaxial states to zero for the
square state (see Fig. 4). Magnitudes of fluctuation induced
free-energy splittings are shown in Table I for 87Rb and
23Na both at zero temperature and at 100 nK (roughly half
the critical temperature for the density in [2]). The last
column shows the critical field beyond which the quadratic
Zeeman effect dominates. Since magnetic fields as low as
50 mG are readily accessible in current experiments [5],
we believe these effects are within experimental reach. The
effect could also possibly be used to access the condensate
temperature by measuring the critical field. In a trap, an
important consideration is that the linear part of the spin
wave dispersions must be above the quantization scale of
the trap, @!trap <mmax�v2

i �.
In conclusion, the role of fluctuations in selecting the

ground-state spin structure of a spin-2 nematic condensate
was studied. The phase diagram in Fig. 1 results from both
quantum and thermal fluctuations. In experiments on 23Na
and 87Rb, these effects would compete against the qua-

dratic Zeeman term, but can predominate for sufficiently
weak fields. An Ising transition marks this point, which we
believe can be accessed readily in future experiments. If so,
this would be one of the first experimental demonstrations
of order by disorder, widely studied in the context of
frustrated quantum magnetism.

We would like to thank Daniel Podolsky, Gil Refael, and
Dan Stamper-Kurn for insightful discussions and Fei Zhou
for alerting us to [21], where similar results are obtained.
Support from the Hellman Family Fund and LBNL
No. DOE-504108 (A. V.), NSF Grant No. 0132874,
AFOSR and Harvard-MIT CUA (E. D. and A. M. T.),
and the Sherman Fairchild Foundation (R. B.) is
acknowledged.

[1] J. Stenger, S. Inouye, D. M. Stamper-Kurn, H. J. Miesner,
A. P. Chikkatur, and W. Ketterle, Nature (London) 396,
345 (1998).

[2] H. Schmaljohann, M. Erhard, J. Kronjäger, M. Kottke,
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FIG. 4. Proportion of Fz � 0 component as magnetic field is
increased to the critical field, for rubidium at density 4
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TABLE I. Free-energy splittings at T � 0, T � 100 nK, and
critical fields, calculated for n � 4
 1014 cc�1, as in the experi-
ments of Ref. [2]. Though sodium’s scattering lengths have a
bigger spread, its critical field is lower because of its stronger
quadratic Zeeman effect.

�E �F Bc
87Rb 0.3 pK 6 pK 27 mG
23Na 3 pK 9 pK 19 mG
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