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NMR spin echo measurements of 13C in C60, 89Y in Y2O3, and 29Si in silicon are shown to defy
conventional expectations when more than one � pulse is used. Multiple �-pulse echo trains may either
freeze out or accelerate the decay of the signal, depending on the �-pulse phase. Average Hamiltonian
theory, combined with exact quantum calculations, reveals an intrinsic cause for these coherent
phenomena: the dipolar coupling has a many-body effect during any real, finite pulse.
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Nuclear magnetic resonance experiments rest upon a
solid theoretical foundation [1–4]. Advanced pulse se-
quences have been successfully applied in all subfields of
magnetic resonance, in atomic physics, and even in the
emerging field of quantum information processing. Thus,
we were surprised to discover that simple experiments on
doped silicon appeared to be inconsistent with conven-
tional NMR theory [5]. For example, coherent signals
may be observed well beyond the T2HE

that is measured
in two-pulse spin echo [6] experiments, provided that more
than one � pulse is used [5,7,8].

In this Letter, we report the same surprising phenomena
in Buckminsterfullerene (C60) and Yttria (Y2O3), two sol-
ids linked to silicon through the form of the homonuclear
dipolar coupling [1]. We also show that multiple �-pulse
echo trains may either freeze out or accelerate the expected
dipolar decay of the NMR signal, depending upon the
phases used for the � pulses. Average Hamiltonian theory
[9], combined with exact quantum calculations, is used to
show that this pulse phase sensitivity has an intrinsic
origin, arising from the surprisingly non-negligible effects
of the dipolar coupling during strong but finite pulses.

The decay of signals produced by the single-�-pulse
Hahn echo sequence [6] (HE: 90X-�-180Y-�-ECHO) as
� is increased is a standard measure of T2HE

[1]. In both
C60 [Fig. 1(a)] and Y2O3 [Fig. 1(b)] powders, the multiple-
�-pulse Carr-Purcell-Meiboom-Gill sequence [10]
(CPMG: 90X-f�-180Y-�-ECHOgrepeat) generates echoes
well beyond T2HE

. Moreover, CPMG in these samples
show both the long tail at short � [Fig. 1(a) and 1(b)] and
the even-odd effect at long � [Fig. 1(c) and 1(d)], as
previously reported in silicon [5,7].

At room temperature, C60 molecules form an fcc lattice,
and each C60 undergoes rapid isotropic rotation about its
lattice point [11]. The time-averaged spin Hamiltonian is
obtained by placing 13C [spin I � 1=2 with 1.11% natural
abundance (n.a.)] spins on a 60-fold degenerate fcc lattice.
Multiple occupancy of an fcc lattice site is not a problem in
this model, since the intra-C60 dipolar couplings are aver-
aged to zero by the rapid buckyball rotation. This motion
also eliminates any inter-C60 J coupling [1] but leaves the
dipolar coupling between spins on different buckyballs.

Figures 1(a) and 1(c) are the strongest evidence yet that
pure dipolar coupling is sufficient to produce the phe-
nomena [12]. Moreover, dilution of the spins is not re-
quired since 89Y (I � 1=2, 100% n.a.) experiments in
Y2O3 [Fig. 1(b) and 1(d)] also look quite similar to the
earlier 29Si (I � 1=2, 4.67% n.a.) experiments in doped
silicon [5,7].

The NMR signal in both Hahn echo and CPMG experi-
ments is / hIyT �t�i �

PN
i Tr f��t�Iyig in the rotating frame

[1–4]. The time-dependent density matrix ��t� is calcu-
lated by starting with its conventional equilibrium value
��0� �

PN
i Izi � IzT , which assumes both the strong field

and the high temperature approximations. Treating a strong
90X pulse as a perfect �

2 rotation about X, ��0� becomes
��0�� � ei��=2�IxT ��0�e�i��=2�IxT � IyT .

In between pulses, the spin Hamiltonian for these
samples has two main parts. The first is the secular part

 

FIG. 1 (color online). NMR measurements of 13C in C60 (a),
(c) and 89Y in Y2O3 (b), (d). Experimental parameters: T �
300 K, B � 12 Tesla, spin-lattice relaxation time T1 � 26 s
(C60), 2.3 hr (Y2O3). The dots in (a) and (b) are Hahn echo
peaks while the red lines are CPMG echo trains. Simulated di-
polar decay curves are shown for comparison (black and blue,
see text). Note the long tail for short interpulse spacings (a), (b)
and the even-odd effect for long interpulse spacings (c), (d).
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of the dipolar coupling:

 H zz �
XN

j>i

Bij�3Izi Izj �
~Ii � ~Ij�; (1)

where Bij �
1
2
�2

@
2

r3
ij
�1� 3cos2�ij	, � is the gyromagnetic

ratio, and ~rij, the vector between spins i and j, satisfies ~rij �
ẑ � rij cos�ij (a static lab field points along ẑ). The second
part is a Zeeman term, H�zi

�
PN
i �@!ziIzi , where!zi is

the angular frequency offset for spin i relative to on-
resonance spins [1–4]. We further simplify this part by
dropping the index i, since the linewidth of spectra studied
here suggests that !zi is extremely uniform and entirely
due to bulk diamagnetism of the powder [e.g., at B �
12 Tesla, the linewidth � � 260 Hz (C60), 180 Hz
(Si:Sb), and 3.1 kHz (Y2O3)]. The spin Hamiltonian de-
scribing free evolution is thus

 H 0 �H zz �H�z
�H zz ��zIzT : (2)

Two different approximations are used to calculate the
expected echo decays shown in Fig. 1. Both average over
many disorder realizations (DRs), where each DR uses a
randomly oriented lattice, with sites randomly occupied to
match the natural abundance. In the first approximation,
we build a closed quantum spin system around a central
spin and keep all of the terms in Eq. (1) while setting �z �
0. Calculation of the evolution of the central spin is exact
using numerical diagonalization [blue curve, Fig. 1(a),
with N � 9 and 18 DRs]. Unfortunately, computer limita-
tions make it impractical to include N > 9 spins in this
approach, so it fails for large or dense spin systems. In the
second approximation, we drop the flip-flop terms in
Eq. (1), which yields an analytic expression [5] for any
N (black curves, Fig. 1, with N 
 1000 and
 150 DRs).
This second approach is unjustified for such clean samples,
but Y2O3 is beyond the limits of the first method. Figure 1
shows Hahn echo data consistent with the expected decay
due to the dipolar coupling. However, the CPMG echoes
are observed well beyond this limit.

The conventional �-function pulse approximation [1–4]
treats very strong pulses as instantaneous � rotations. In
this limit, the density matrix for the Hahn echo (SE1) must
agree with that for the nth spin echo (SEn) of a CPMG
experiment. Thus the difference between the CPMG and
Hahn echo data (Fig. 1) is surprising [5].

Moreover, the experiments defined in Table I should
produce identical jhIyT �t�ij if the � pulses are instanta-
neous. However, the measured echo trains for short �
[Figs. 2(a) and 2(c)] exhibit a striking pulse sequence
sensitivity (PSS). In this limit, the measured signal can
either stay very close to 1 (CPMG, APCP) or dive rapidly
towards zero (CP, APCPMG). The PSS is observed [13]
even when BB1 composite � pulses [14] are used.

It is natural to attempt to blame the discrepancies be-
tween theory and experiment on extrinsic imperfections of

instantaneous 180Y pulses. Examples include misadjust-
ment of the rotation angle, rf inhomogeneities, and pulse
phase transients [1,3]. We investigated these and other
extrinsic errors of instantaneous pulses, but despite experi-
mental improvements [13], the effect persists. This led us
to consider the limits of the conventional �-function pulse
approximation.

The full Hamiltonian during an ideal pulse along the �i
direction is

 H P�i
� �@!1I�iT

�H 0; (3)

where the pulse’s angular frequency,!1, is the same for all
spins. The �-function pulse approximation produces an
instantaneous � rotation about axis �i by keeping !1tp �
� while !1 ! 1 and tp ! 0, where tp is the pulse
duration.

In any real experiment, tp > 0, so the H 0 term in
Eq. (3) might have some non-negligible effect. This pos-

TABLE I. � pulse and echo phases for four pulse sequences of
the form: 90X-f�-180�1

-�-SE1-�-180�2
-�-SE2-grepeat.

Sequence �1 �2 SE1 SE2

CP �X �X �Y �Y
APCP �X �X �Y �Y
CPMG �Y �Y �Y �Y
APCPMG �Y �Y �Y �Y

 

-1

0

1

N
M

R
 D

at
a

-1

0

1

S
im

ul
at

io
n

-1

0

1

N
M

R
 D

at
a

3020100
Time (ms)

-1

0

1

S
im

ul
at

io
n

3020100
Time (ms)

1

0

-1
10

0.1

0
1312

(a) (b)

(c) (d)

FIG. 2 (color online). (a), (c) 29Si measurements in Si:Sb
(1017 Sb=cm3) with the four phase choices from Table I. (b),
(d) N � 7 simulations for the same experimental conditions:
tp � 14 �s, � � 36 �s, T � 300 K, and B � 11:75 Tesla
( �B

2� � 99:5 MHz, !1

2� � 35:7 kHz). Each curve is averaged
over 1000 DRs with �z=h drawn from a 290 Hz wide
Gaussian and typical couplings jB12j=h � 44:5 Hz, jB17j=h �
3:5 Hz. Inset (a) shows rapid decay of CP data. Inset (b) shows a
distinction between CP and CPMG simulations. The black
dashed reference (a)–(d) sets �z � 0 and turns H zz off during
each pulse.
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sibility was first raised by Dobrovitski’s simulations [15] of
our silicon data [5]. This is an intrinsic deviation from the
instantaneous pulse limit, which cannot be avoided for
tp > 0, as long as H 0 is nonzero during the pulse. In
fact, this is the sole cause of the small PSS that is seen in
the N � 7 exact calculations [Fig. 2(b) and 2(d)] since we
have not included any extrinsic pulse errors. The dashed
reference shown in Fig. 2(a)–2(d) is the N � 7 exact
calculation of CPMG for �z � 0, with H 0 set to zero
during the pulses [16]. Given the strength of the pulses,
!1

2�� � 108, we were surprised to see any difference in the
simulations.

To better understand the origin of the PSS in the simu-
lations, we applied average Hamiltonian theory to CPMG
with nonzero pulse duration (the other sequences will be
treated elsewhere [13,16] ). The toggling frame Hamilton-
ian ~H �ti� in Table II is used to calculate the leading terms
of the average Hamiltonian � �H � �H

�0�
� �H

�1�
� . . .�

[3,4,9]. The zeroth order term is

 

�H
�0�
CPMG �

1

tc
�4�H zz � tpH yy�; (4)

where the cycle time tc � 4�� 2tp. The time-dependent
terms within each pulse (see Table II) give rise to a first
order term:
 

�H
�1�
CPMG �

�i
2tc@

tp
�
ftp�H

A
y ;H

S
y �H yy	

� �8�� 2tp���zIxT ;�zIzT �H yy	g: (5)

In contrast, the full �H for CPMG with �-function� pulses
is simply H zz. Since the experimental consequences of
finite pulses are not obvious from Eqs. (4) and (5), we used
simulations to study their effects. Focusing on the simplest
case of �z � 0 leaves only one commutator in Eq. (5).

Figure 3 shows calculations of the CPMG sequence that
yield a long tail with parameters �z � 0, !1

2� � 40 kHz,
and � � 1 �s. Setting H 0 to zero during the � pulses
yields a leading term 4�

tc
H zz, causing the fastest signal

decay [Fig. 3(a)]. Keeping H 0 during each pulse modifies
this leading term to �H

�0�
CPMG slowing the signal decay

[Fig. 3(b)]. Adding in the higher-order correction
( �H

�1�
CPMG) slows the decay even more, resulting in the

long tail [Fig. 3(c)]. This is true even for �z � 0 [13].
Average Hamiltonian theory was first used to design

line-narrowing sequences by generating particular leading
terms in the average Hamiltonian. For example, pulse
sequences can be designed to set �H

�0�
� 0, which results

in a lack of signal decay. Higher-order corrections �H
�1�

�

0 would then modify this behavior by causing some decay
in the signal [3,4,9]. In contrast, Fig. 3 shows that for the
CPMG sequence, higher-order corrections to the zeroth
order Average Hamiltonian can slow decay and even cause
a long tail to develop.

The exact calculations in Fig. 3(d)–3(f) look very simi-
lar at early times, as expected for the conditions of the
simulations [Fig. 3 (inset)]. Most surprisingly, the tail
height grows with N [Fig. 3(d)–3(f)]. Thus, knowing the
linewidth or Bij scale is not enough to predict the shape of
the whole curve. Extrapolating from these results [13,16],
it appears that the small N and Bij used in Fig. 2(b) inhibit
any tail. Moreover, a noticeable tail should emerge in
Fig. 2(b) if the simulations could use N > 20.

While the long-lived coherence in CPMG is reminiscent
of spin locking [3], the underlying dynamics caused by
strong � pulses induce important time-dependent changes
in the system. More information is revealed by visualizing
the entire time-evolved density matrix as shown in Fig. 4.
After two strong � pulses (Fig. 4, leftmost column) the

TABLE II. Toggling frame Hamiltonians ~H �ti� during each
interval i for the CPMG cycle f�-180Y-2�-180Y-�g with pulse
time tp. Here, H yy �

PN
j>i Bij�3Iyi Iyj �

~Ii � ~Ij�, H A
Y �PN

j>i
3
2Bij�Ixi Izj � Izi Ixj �, and H S

Y �
PN
j>i

3
2Bij�Izi Izj � Ixi Ixj �.

The factors �C�i ; S�i ; C2�i ; S2�i� � �cos�i; sin�i; cos2�i; sin2�i�
are time dependent, as �i � !1ti and 0 � ti � Ti within each
interval i [3,4,9].

i Ti
~H �ti�

1 � ��zIzT �H zz

2 tp ��z�IzTC�i � IxT S�i � �
1
2H yy �H S

YC2�i �H A
YS2�i

3 2� ��zIzT �H zz

4 tp ��z�IzTC�i � IxT S�i � �
1
2H yy �H S

YC2�i �H A
YS2�i

5 � ��zIzT �H zz
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FIG. 3 (color online). CPMG calculations for pure dipolar
decay (�z � 0, !1

2� � 40 kHz, � � 1 �s). Each curve averages
400 DRs [exception (f): 80 DRs] of N spins on a silicon lattice,
with �0 � 5� of 29Si. Several approximations are used for N �
4: (a) setting H 0 � 0 during pulses, (b) using �H

�0�
CPMG only, and

(c) using �H
�0�
CPMG �

�H
�1�
CPMG only. Exact calculations for

(d) N � 4, (e) N � 6, and (f) N � 8 show that the tail height
depends on N (even N are compared to avoid artifacts [19] ).
Inset shows the pulse strength used (!1 
 2��) compared to
the calculated spectra for N � 4 (red) and N � 6 (blue).
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density matrix still looks like the initial state ��0�� � IyT .
The top two rows use the �-function pulse approximation.
In each DR (first row), the flow of coherence is restricted to
the 
1-quantum coherence cells [1,4], consistent with the
selection rules for pure dipolar coupling and �-function �
pulses. Over 400 DRs (second row), all quantum coher-
ences average to zero after many pulses, so the measurable
signal decays as in Fig. 3(a). The bottom two rows use
exact � pulses [see Eq. (3)]. In each DR (third row),
coherence flows throughout the entire density matrix, since
exact � pulses [see Eqs. (4) and (5)] open many coherence
transfer pathways [4]. Despite this complexity, observable
coherences emerge after averaging over 400 DRs (fourth
row), even after many pulses, a counterintuitive result that
yields the smooth curve in Fig. 3(e).

Nonzero pulse duration has been studied for line-
narrowing sequences built around �=2 pulses, and it is
not considered to be an error [3]. For example, the leading
term of the average Hamiltonian for the Ostroff-Waugh
experiment [17] is identical for both instantaneous and
nonzero duration �=2 pulses, �H

�0�
OsWa � �

1
2H yy. In con-

trast, nonzero duration � pulses introduce completely new
operators (�H zz) into the average Hamiltonian of CPMG
[Eqs. (4) and (5)]. Nonzero duration effects should be
maximal for m� � pulses, where m � 1; 2; 3; . . . .

In general, related effects could arise whenever the
applied pulse term does not commute with the spin-spin
interaction (e.g., Ising or general anisotropic Heisenberg
couplings). Examples include ESR experiments on dilute
moments or bang-bang control sequences [18] applied to
systems of qubits with weak always-on coupling. Local
pulses that address only a subset of coupled spins are also
susceptible to these effects. Developing an improved

understanding of these many-body corrections to pulse
action will enable the rational design of pulse sequences
optimized to boost signal-to-noise, narrow spectra, and
achieve desired coherence transfer pathways.

We thank J. Murray, K. MacLean, X. Wu, E. Paulson,
and K. W. Zilm for their experimental assistance and C. P.
Slichter, V. V. Dobrovitski, S. M. Girvin, J. D. Walls, and
M. M. Maricq for helpful discussions. Silicon samples
were provided by R. Falster (MEMC) and T. P. Ma. This
work was supported in part by the National Security
Agency (NSA) and Advanced Research and Develop-
ment Activity (ARDA) under Army Research Office
(ARO) Contracts No. DAAD19-01-1-0507 and
No. DAAD19-02-1-0203, by the NSF ITR Program under
Grant No. DMR-0342157, and also by NSF Grant
No. DMR-0207539.

*Email address: sean.barrett@yale.edu
†Electronic address: http://opnmr.physics.yale.edu

[1] C. P. Slichter, Principles of Magnetic Resonance
(Springer, New York, 1990), 3rd ed.

[2] A. Abragam, The Principles of Nuclear Magnetism
(Oxford University Press, Oxford, 1983), 2nd ed.

[3] M. Mehring, Principles of High Resolution NMR in Solids
(Springer-Verlag, Berlin, 1983), 2nd ed.

[4] R. R. Ernst, G. Bodenhausen, and A. Wokaun, Principles
of Nuclear Magnetic Resonance in One and Two
Dimensions (Clarendon, Oxford, 1987).

[5] A. E. Dementyev, D. Li, K. MacLean, and S. E. Barrett,
Phys. Rev. B 68, 153302 (2003).

[6] E. L. Hahn, Phys. Rev. 80, 580 (1950).
[7] S. Watanabe and S. Sasaki, Jpn. J. Appl. Phys. 42, L1350

(2003).
[8] T. D. Ladd, D. Maryenko, Y. Yamamoto, E. Abe, and

K. M. Itoh, Phys. Rev. B 71, 014401 (2005).
[9] U. Haeberlen and J. S. Waugh, Phys. Rev. 175, 453 (1968).

[10] H. Y. Carr and E. M. Purcell, Phys. Rev. 94, 630 (1954);
S. Meiboom and D. Gill, Rev. Sci. Instrum. 29, 688
(1958).

[11] C. S. Yannoni, R. D. Johnson, G. Meijer, D. S. Bethune,
and J. R. Salem, J. Phys. Chem. 95, 9 (1991); R. Tycko,
R. C. Haddon, G. Dabbagh, S. H. Glarum, D. C. Douglass,
and A. M. Mujsce, J. Phys. Chem. 95, 518 (1991).

[12] Similar C60 data have been reported by M. B. Franzoni and
P. R. Levstein, Phys. Rev. B 72, 235410 (2005).

[13] Dale Li et al., arXiv:0704.3620.
[14] S. Wimperis, J. Magn. Reson., Ser. A 109, 221 (1994).
[15] V. V. Dobrovitski (private communication).
[16] Yanqun Dong et al. (unpublished).
[17] E. D. Ostroff and J. S. Waugh, Phys. Rev. Lett. 16, 1097

(1966).
[18] L. Viola and S. Lloyd, Phys. Rev. A 58, 2733 (1998).
[19] J. D. Walls and Y. Y. Lin, Solid State Nucl. Magn. Reson.

29, 22 (2006).
[20] See EPAPS Document No. E-PRLTAO-98-001716 to view

the movies underlying Fig. 4. For more information on
EPAPS, see http://www.aip.org/pubservs/epaps.html.

 

FIG. 4 (color online). Calculated snapshots of a 6 spin (26 �
26) density matrix evolving during CPMG with conditions as in
Fig. 3. The red-white-blue color scale shows the phase angle;
black cells have negligible magnitude. The top two rows use the
�-function pulse approximation. The bottom two rows use exact
� pulses [20].
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