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Swinging of Red Blood Cells under Shear Flow
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We reveal that under moderate shear stress (1 = 0.1 Pa) red blood cells present an oscillation of their
inclination (swinging) superimposed to the long-observed steady tank treading (TT) motion. A model
based on a fluid ellipsoid surrounded by a viscoelastic membrane initially unstrained (shape memory)
predicts all observed features of the motion: an increase of both swinging amplitude and period (1/2 the
TT period) upon decreasing 1y, a ny-triggered transition toward a narrow 71y range intermittent regime
of successive swinging and tumbling, and a pure tumbling at low 70y values.
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A human red blood cell (RBC) is a biconcave disk-
shaped membrane encapsulating a Newtonian solution of
hemoglobin. The membrane is composed by a fluid incom-
pressible lipid bilayer underlined by a thin elastic cytoske-
leton [1]. This complex structure determines the RBC
behavior in shear flow, which greatly influences flow and
mass transport in the microcirculation in both health and
disease [2]. However, this behavior is not well understood
yet and important questions remain open. First, the state of
deformation of the elastic membrane at rest is still debated.
Does RBC present shape memory (membrane elements of
the rim and the dimples nonmechanically equivalent) as
recently suggested [3]? Second, flowing RBCs were ob-
served [4—7] only when the cells were suspended in plasma
and present an unsteady tumbling (T) solidlike motion [4]
or when they are subjected to a high shear stress and
exhibit a droplike tank treading (TT) motion characterized
by a steady orientation and membrane rotation about the
internal fluid. The RBC regime of motion at smaller shear-
stress and close to the T-TT transition has not been studied,
although it is of crucial importance. Indeed, the simplest
models, which treat RBCs like fluid ellipsoids [7-9] re-
trieve T and TT motions but do not capture the shear-rate
dependency of the transition, thus raising the question of
the role of the elasticity of the membrane on the cell
behavior.

PACS numbers: 83.80.Lz, 83.50.—v, 87.17.]

Here, by using a recent method of cell imaging parallel
to the shear plane [10], we explore the RBC movement
close to the T-TT transition. In the TT regime, we reveal
that RBCs present an oscillation of their inclination with a
period equal to half the TT period that we name swinging
(S). We characterize the shear-stress dependence of this
oscillation down to the T-TT transition. We show that the
transition to pure T is preceded by a narrow critical shear-
stress regime where the RBC exhibits an intermittent S-T
behavior. Finally, we propose a model, assuming an elastic
nonspherical RBC membrane, which captures the main
features of the observed behavior.

Materials and methods.—Direct measurements of the
orientation of the cells with respect to the flow direction
(angle 6) and cell shape (lengths of the long and small axis
of the cell cross section, a; and a,, respectively) are
provided from side-view microscopic imaging [10]
[Fig. 1(a)]. We varied the wall shear rate y (in the range
0-5 s~ !) and the outer viscosity 7, by suspending RBCs in
various solutions of dextran (concentration 6%, 7.5%, or
9% w/w and viscosity 22, 31, and 47 mPa - s, respec-
tively). Correspondingly, the wall shear stress, 717y, varies
in a range from O to 0.25 Pa. We observed (i) the motion of
flowing RBCs at a fixed 1,7, (ii) the motion of individual
cells at various 7,7y (for 8 RBCs), and (iii) the T-TT
transition of 35 cells by increasing and/or decreasing 1,7y .

FIG. 1.

Units [9;] = [90] =[1,,] = mPa-s, [u] = Pa and [y] = s~ '. (a) Schematic drawing of a TT ellipsoid in a shear flow.

(b) RBC swinging (y = 1.33, ny = 47). Time sequence of 2 s. (c) Rotation of a bead (diameter 1 wm) stuck on the membrane of a
RBC with (y = 6, ng = 47). Time sequence of 1 s. (d) The transition from S to T induced by decreasing ¥ is associated with a
transient localized deformation (n, = 47, y = 2.66). Time sequence of 1 s.
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FIG. 2. Same units as in Fig. 1. (a) Orientation versus the
normalized time y¢ for various cells from top to bottom: (y =
1.8, my=22), (y =26, ng=231), (y=06.6, ng=47).
(b) Orientation versus yt for (O) a RBC with (y = 0.8, 1y =
47), solid line from Eq. (2) with (5, = 1120, u,, = 0.42); () a
polymeric capsule from [18] with (y = 18, 1y = 964). Solid
line from Eqgs. (2) with the surface moduli (7,,e = 0.085 mPa -
s/m, m,,e = 0.675 mPa - m), and (a; = 278.8 um, a, = a3 =
170.8 pm) obtained from the size at rest Ry = 224.8 um of the
capsule and its mean deformation during flow: D =
(a; —ay)/(a; + ay) = 0.12 at y = 18.

Observations.—A typical behavior is illustrated in
Fig. 1. For high 7y values, RBCs present a quasisteady
TT motion as previously reported [5—7]. When 7nqvy is
decreased, the RBCs inclination oscillates about a mean
angle (Fig. 1 and [11]), down to a critical 5,y , for which
RBCs tumble at least once [Fig. 1(d)]. Swinging is char-
acterized by a quasi-nondeformed cell shape (maximum
variation of a; = 5%) and a mean value of the cell incli-
nation ranging from 6° to 25° [Figs. 1(b) and 2]. Moreover,
as revealed from observing small carboxylated beads stuck
to the membrane [Fig. 1(c)], S occurs while the membrane
tank treads and the oscillation period is equal to half the TT
period. Observations of single RBCs at various y show that
both the magnitude A0 = 6., — Omin and the period T
of oscillation increase significantly upon decreasing ¥ as
illustrated in Figs. 3(a) and 3(b). The transition of move-
ment from pure T to pure S (respectively, pure S to pure T)
is induced by tuning up (respectively down) . Its more
striking feature is the existence of a regime of intermediate
motion where the cells alternatively present tumbles of
180° separated by several S oscillations [Fig. 4(a)].
Given the experimental constraints, it is not easy to follow
the cells long enough to observe a large series of tumbles
and swings to determine the ¢ domain of intermittency. We
choose to observe the shear rate corresponding to a change
in movement from S to T () with decreasing 7, and from
T to S (y7) with increasing ¥ over a time scale of ~20 s.
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FIG. 3. Same units as in Fig. 1. Experimental 7y variations of
(a) A6 and (b) T, on single RBCs: 1y = 22: (@), (O): cell (a);
10 = 31: (M), (O); pg = 47: (®), (A), (+), (V). (a) inset for cell
(a): (@) A, (W) T, (O) one tumbling period value, and (O) §
versus y. Corresponding curves of the model with w,, = 0.38
and 7,, = 700: (dash-dotted line) A@, (dashed line) T, and
(solid line) 4.

The difference 7. — 7, that we call hysteresis, is con-
sidered to give an order of magnitude of the intermittency
v domain: for instance for two different RBCs at 1y =
31mPa-s, y= =047 s™! while y7 =1s ! and y5 =
0.8 s™! while y7 = 1.73 s~!, respectively. Distribution
functions of 1,y. and nys obtained on 35 RBCs are
shown in Fig. 4(b). The hysteresis, estimated from the
distance between the two maxima of the two distributions,
is of the order of 1073 Pa.

Swinging and previous studies on RBCs.—Previous
studies, performed at higher 1,7 did not detect cell oscil-
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FIG. 4. Same units as in Fig. 1. (a) (O) Successive S and T at
(ng =22, v = 1.526); (solid line) numerical calculus with
(no =22, y = 1526, u, =0.454, n,, = 700). (b) Distribu-
tion function of critical shear stresses of transition for increasing
(7”) and decreasing (y=) shear rates.
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lation, likely because cells were observed perpendicularly
to the shear plane. Nevertheless, we report in [11] the y
variations of the oscillation frequency f ., obtained in this
study together with the TT frequencies @ reported in the
literature for the higher 7oy [6,7]. The two sets of points
are almost overlapping only if f. is divided by 2. This
illustrates again the direct link between membrane rotation
and oscillation.

Swinging and previous studies on elastic shells.—The
full RBC behavior we described here has never been
observed on purely viscous objects such as lipid vesicles
[10,12] nor predicted [8,13—15]. Oscillations have, how-
ever, been detected on systems that differ from RBCs by
their small nonsphericity at rest and the high extensibility
of their surface, namely, elastic protein-coated drops [16]
and polymer capsules [17,18]. In the latter case, the factor
of 2 between TT and oscillation periods and the A6 de-
crease with increasing y were observed but no transition to
tumbling was found. Moreover, no explanation of the
oscillation was proposed, neither by these authors nor by
Ramanujan and Pozrikidis [19], who retrieved a shell
oscillation (limited to one period) from a full numerical
simulation performed on a TT elastic biconcave shell.

Model. —We propose here a simple analytical approach
based on the classical framework of Keller and Skalak
(KS) [7-9], which treat the RBC as a fluid ellipsoidal
membrane enclosing a viscous liquid. The KS model
qualitatively retrieves TT and T, but predict neither the
shear-rate dependency of the transition, nor the S behavior.
Notably, they do not account for the elastic energy storage,
which may be induced by local deformations of the cytos-
keleton during TT. Indeed, if one assumes RBC shape
memory, the local elements of the composite membrane
(cytoskeleton and lipid bilayer), including the elements
which form the rim and the dimples, are not equivalent
and are not strained in the biconcave resting shape. During
TT, the elements which form the rim at rest rotate about the
stationary cell shape to reach the dimples after rotation and
reciprocally. They are then locally strained and store elastic
energy. After a 77 rotation, the elements retrieve their initial
shape and are no more strained. It is clear that this periodic
storage of energy is significant only when the unstrained
RBC shape is nonspherical, otherwise the membrane ele-
ments tank tread without modifying the global state of
stress of the cell, preserving the steady nature of the TT
motion. In order to derive tractable equations of motion,
we consider an oblate ellipsoid filled with a viscous liquid
and delimited by a viscoelastic 3D thin membrane, which
includes the lipid bilayer and the underlying cytoskeleton
[20]. The membrane elements are prescribed to rotate
along elliptical trajectories parallel to the shear plane,
with a linear velocity field given by v, = —w(a,/a,)x,,
v, = w(ay/a;)x,, v3 =0, where w and @ are the phase
angle of a membrane element and its instantaneous fre-
quency of tank treading, respectively. The KS equation for
RBC motion is obtained by stating that at equilibrium the
total moment exerted by the external fluid on the cell

vanishes [first equation in Egs. (2)]. In addition, the move-
ment satisfies the conservation of energy; i.e., the rate of
dissipation of energy in the cell must equal the rate at
which work is done by the external fluid on the cell. KS
calculated both rates assuming viscous energy dissipation
in the cell. We add to this latter contribution the elastic
power stored in the periodic elastic strain of the cytoske-
leton [22]: Py = [q Tr(o: D)d(), where () is the mem-
brane volume, D the Eulerian strain rate tensor derived
from the KS velocity field, and o the shear-stress tensor in
the membrane; o is computed from the local deformation
of the membrane due to TT, assuming a simple Kelvin-
Voigt viscoelastic material: ¢ = 27,,D + 2u,,E, where E
is the Euler-Almansi strain tensor obtained from the KS
velocity field. After some algebra, P, writes as

1 . /a
Pelz_d)<_2_

a; 2 X .
: _> 29,0 + w,sinw)]Q, (1)

a a

where 7,, and u,, are the membrane viscosity and the
shear modulus, respectively. Conservation of energy pro-
vides a constraint on the allowable RBC motion and yields
a second differential equation (for more details, see [11]).
The two coupled equations are

0 1 2 b 1 a?—a?
- = ~ 2a1a22 2 " é % 05(20),
Y 2 ajtayy 2aita
w —/3
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Q
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where 6 is the time derivative of the cell inclination, f|, f5,
and f3 are geometrical constants, and V is the RBC volume
(same definition as in [8]). The limiting case u,, = 1,, =
0 corresponds to KS. In order to test whether this simplified
model retrieves the observed RBC behavior, we numeri-
cally solved the equations using the following set of pa-
rameters: a; = a3 = 4 um, a, = 1.5 um, Q = e [23],
where 2, is the oblate ellipsoid area and ¢ = 50 nm is the
membrane thickness [24]. 7; is fixed at the physiological
value of 10 mPa - s [7] and 7, is adjusted in the range
0.7-2 Pa - s [7]. We obtain 6(7), (1), w(t), and @ (7). Time
oscillations are indeed observed numerically (see [11]),
whose features obtained with suitable couples of w,, and
1,, reproduce experimental oscillations measured for both
RBCs and one capsule extracted from [18], as shown in
Fig. 2(b). Moreover, the model captures the trends of the y
variations of A6, T, and the mean oscillation angle  as
seen in the inset of Fig. 3(a). The decrease of both A6, T,
reported in Fig. 3 can be directly deduced by treating the
elastic contribution as a small perturbation in the second
equation of (2), valid in the linear part, since one recovers
the steady KS solution at the order O of the parameter in
front of sin(2w), while at the first order one finds that A@
scales as (u,,/7) and 6 oscillates at half the TT period and
is linear in y~'. Finally, the model describes the S-T
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FIG. 5. Theoretical shear stresses of transition versus u,, with
N = 1000: (O) noye s (X) moy., and (A) no(ye — ¥).

transition for decreasing values of y (see [11]) and the
existence of an intermittent regime as shown in Fig. 4. The
theoretical 7 domain of intermittency ([., ¥. ]) has the
same order of magnitude as experimental observations of
v< and ;. Asitis seen by requiring the second term in the
second equation of (2) to be of the same order of magnitude
as the first part, the critical shear rate should scale as
Mm/ Mo. It is indeed numerically observed (Fig. 5). Both
critical values of ¥} and 1,7, are mainly governed by
the RBC elastic contribution for given cell geometry and
may provide an average determination of w,, from the
observations of the transition reported in Fig. 4(b).
Indeed, from Figs. 5 and 4(b), we find that u,, ranges in
the interval 0.14-2 Pa. By setting the 2D shear modulus
Mms = Mue we obtain values ranging from 0.07 to 1 X
1077 N/m (e = 50 nm) below that usually reported [1].
We also find a comparable difference on w,, ¢ with that
reported for the elastic capsule of Fig. 2(b) from [18]. This
underestimation likely originates from the major simplifi-
cations we made in order to obtain simple analytical equa-
tions allowing the full understanding of the physics of the
problem: (i) simplistic constitutive equations, (ii) KS ve-
locity field, which may overestimate membrane deforma-
tions. In particular, Tran-Son-Tay et al. [7] suggested that
the Secomb-Skalak area conserving velocity field [21]
would lead to a 70% increase of the membrane viscosity
compared to that derived from the KS model. (iii) Treat-
ment of strains from a 3D description of the membrane of
RBCs and capsules although these systems form 2D shells
[20]. However, the main interest of this tractable model is
to understand the role of the various physical parameters on
the motion. For example, for given external viscosity and
shear rate, A6 is not much sensitive to values of 7; and 7,,
taken in the physiological range. A6 is essentially fixed by
M, and its measurement may provide a complementary
method to determine w,, on individual flowing RBCs.

In conclusion, the swing and the shear-stress triggered
transition of motion of RBCs show the existence of their
shape memory and are a signature of their membrane shear
elasticity. Despite its simplicity, our model provides a good
description of the observed behavior and we believe that a
more refined model should allow a sensitive determination
of individual RBC mechanical properties.
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