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To account for azimuthal surface anchoring of a nematic liquid crystal, Berreman [Phys. Rev. Lett. 28,
1683 (1972)] proposed a simple model attributing the surface anchoring to the elastic distortion of the
liquid crystal induced by the grooves of a surface. He showed that the surface anchoring energy is
proportional to sin2�, with � being the angle between the director at infinity and the direction of the
surface grooves. We argue that his assumption of negligibly small azimuthal distortion of the nematic is
not valid. Proper treatment of the azimuthal distortion reveals that the Berreman’s model should yield a
surface anchoring energy proportional to sin4�. This implies that surface grooves alone cannot contribute
to the surface anchoring coefficient in the usual Rapini-Papoular sense.
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The utility of a liquid crystal in applications relies
heavily on the fact that the order of a liquid crystal can
be controlled by a surface adjacent to it. Such tendency of a
surface to align a liquid crystal is called ‘‘surface anchor-
ing’’ [1–3], and to achieve desirable anchoring properties
is of crucial importance in practical applications such as
display technologies. What brings about surface anchoring
and how it can be controlled are also of fundamental
interest.

The easiest way of achieving an alignment of a liquid
crystal along one direction parallel to a surface is to rub the
surface in that direction. There has been a longstanding
debate on the underlying mechanism of anchoring on
rubbed surfaces. Several studies attributed it to the inter-
molecular interactions between the liquid crystal mole-
cules and the polymer chains constituting the surfaces
[4–6], while others discussed the effect of long-range
elastic distortion induced by surface grooves or scratches
created by the rubbing process. The first theoretical study
on the latter mechanism was carried out by Berreman [7],
who proposed a simple model; a nematic liquid crystal in
contact with a sinusoidal wavy surface. He assumed that
the director n, a unit vector describing the local orientation
of a nematic liquid crystal, at the surface is always parallel
to it, and calculated the free energy due to the distortion of
n induced by the sinusoidal surface. In the case of equal
bend and splay elastic constants (K1 � K3 � K), the free
energy due to the surface per unit area reads

 f �
1

4
KA2q3sin2�; (1)

where A and q > 0 are the amplitude and the wave number
of the sinusoidal surface, respectively, and � describes the
angle between the groove direction and the director at
infinity. Since the Berreman’s model is simple enough, it

has served as a starting point for subsequent numerous
theoretical as well as experimental studies concerning the
geometrical aspects of surface anchoring [8–10]. Several
experimental studies were also devoted to the direct con-
firmation of the Berreman’s argument [11–13]. We also
note that the recent rapid development of nanotechnology
has opened up the possibility of creating submicron-scale
patterned or grooved surfaces to realize certain specific
anchoring properties [14–20]. Experimental realization of
a submicron-scale surface grooved with sufficient geomet-
rical precision has again provoked interest in the notion of
surface anchoring attributable to the geometry of the
surface.

In this Letter, we critically reexamine the theoretical
treatment of Berreman for the surface anchoring induced
by grooves. His theory deriving Eq. (1) involves an as-
sumption that only the tilt distortion is induced by the
surface grooves; the azimuthal distortion is negligibly
small. We argue that this assumption cannot be valid for
general � except for � � 0, �=2; those distortions are of
comparable magnitude. Starting from the same setup of the
Berreman’s argument, we recalculate the surface anchor-
ing energy and find that Eq. (1) needs to be modified in a
qualitatively substantial manner.

Let us first describe the model of the system we want to
consider and briefly review the theory of Berreman [7].
The Frank elastic energy of a nematic liquid crystal can be
described in terms of a director n as [1] F � 1

2

R
dr�K1�r �

n�2 � K2�n � r� n�
2 � K3�n� r� n�

2�. When the
distortion of the nematic from the uniform alignment
(we take the x direction along this aligned direction) is

small enough, we can write down the director as n �

�
��������������������������
1� n2

y � n2
z

q
; ny; nz� ’ �1; ny; nz� and the Frank elastic

energy up to quadratic order in ny and nz reads
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 F �
1

2

Z
dr�K1�@yny � @znz�2 � K2�@ynz � @zny�2

� K3��@xny�
2 � �@xnz�

2	�; (2)

Here we consider a surface groove whose shape can be
described by

 z � ��x; y� � A sin�q�x sin�� y cos��	; (3)

where A, q, and� have been defined above and we assume
Aq
 1. A nematic liquid crystal is filled in the semi-
infinite region z > ��x; y�. We further assume that the
director at the surface tends to lie tangential rather than
perpendicular to it, and no preferred direction on the
surface is postulated. When � � �=2, the director at the
surface should then behave as ny � 0 and nz � Aq cosqx.
With the simplifying assumption that K1 � K3, the solu-
tion of the Euler-Lagrange equations �F=�ny;z � 0 com-
patible with the above surface behavior of the director
reads ny � 0, and

 nz � Aq cos�qx�e�qz: (4)

Substituting Eq. (4) into Eq. (2), one can calculate the
energy of the director distortion due to the surface groove,
that is, the anchoring energy of the grooved surface. The
energy per unit area f is f � 1

4K3A
2q3.

In the general case with � � �=2, Berreman assumed
that the azimuthal variation of the director, ny is negligibly
small as compared with that of nz. Then, after taking care
of the Euler-Lagrange equation �F=�nz � 0 and the
boundary condition at the surface,

 nz � Aq sin� cos�q�x sin�� y cos��	; (5)

one finds that Eq. (4) must be replaced by

 nz � Aq sin�e�qz cos�q�x sin�� y cos��	; (6)

which yields Eq. (1).
To discuss the validity of the above Berreman’s theory,

in particular, the assumption of negligibly small ny, let us
consider the equilibrium conditions using the full varia-
tional principle; �F � 0 for infinitesimal variation of the
director, �ny and �nz. It yields the Euler-Lagrange equa-
tions

 0 � �K1@y�@yny � @znz� � K2@z�@ynz � @zny�

� K3@
2
xny; (7)

 0 � �K1@z�@yny � @znz� � K2@y�@ynz � @zny�

� K3@2
xnz; (8)

together with the condition at the surface [21]:

 K1�@yny � @znz��nz � K2�@ynz � @zny��ny � 0: (9)

Next we consider the boundary conditions for ny and nz.
From Eq. (3), the assumption of the tendency of the direc-

tor at the surface to lie tangential to the surface reads

 @�=@x� ny@�=@y� nz � 0: (10)

Equation (10) yields Eq. (5) for nz up to leading order in
Aq, which serves as the boundary condition for nz. Since
@�=@x, @�=@y, and nz are of the order of Aq, and we have
assumed small ny (here by ‘‘small’’ we imply that ny is not
of order unity), Eq. (10) does not impose any boundary
condition on ny in the leading order in Aq. The following
calculation indeed yields ny of the order of Aq, which
justifies a posteriori the present treatment for ny. The fixed
boundary condition for nz, Eq. (5), requires that �nz in
Eq. (9) must be set to zero. Since no condition is imposed
for �ny as noted above, Eq. (9) then results in an additional
boundary condition

 @ynz � @zny � 0 (11)

at the surface.
To summarize, what we must do to obtain the equilib-

rium director profile is to solve the Euler-Lagrange Eqs. (7)
and (8) under the boundary conditions (5) and (11). Since
Eqs. (7) and (8) are effectively fourth-order linear differ-
ential equations due to the coupling between ny and nz,
four eigenmodes are present in a mathematical sense.
However, two of them are incompatible with ny � nz �
0 at z � �1. A third one [22] cannot satisfy the boundary
condition (11). Thus we are left with one eigenmode that is
reasonable in a real physical system. Taking into account
the boundary condition (5), one obtains

 nz � Aq sin�e�qzg1��� cos�q�x sin�� y cos��	; (12)

 ny �
Aq sin� cos�

g1���
e�qzg1��� sin�q�x sin�� y cos��	;

(13)

with g1��� �
�������������������������������������������������
cos2�� �K3=K1�sin2�

p
. Obviously

Eq. (12) satisfies the boundary condition (5) and it is not
a difficult task to check that Eqs. (12) and (13) are indeed
the solution of the Euler-Lagrange Eqs. (7) and (8) ful-
filling the remaining boundary condition (11). In Fig. 1, we
show what our director profile, Eqs. (12) and (13), looks
like for � � �=4 as compared with Berreman’s profile.

From Eqs. (2), (12), and (13), we can straightforwardly
calculate the anchoring energy per unit area as

 f �
1

4
K3A2q3 sin4�

g1���
: (14)

Several comments are in order: Eqs. (12) and (13) clearly
show that nz, ny � O�Aq� and therefore are indeed com-
patible with the boundary condition (10) up to the leading
order in Aq. We also notice that (14) does not contain the
twist elastic constant K2, which indicates that no twist
deformation is involved. Indeed, from Eqs. (12) and (13),
one can easily check @ynz � @zny � 0, which again im-
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plies the absence of twist deformation. Note also that the
absence of twist at the surface is nothing but the boundary
condition (11).

The most important thing that Eq. (14) implies is that the
dependence of the anchoring energy on � is different from
that derived by Berreman (1). In a simple case, K1 � K3,
g1��� � 1 yields f / sin4�, in sharp contrast to the
Berreman’s result f / sin2�. For clarity, we plot in
Fig. 2 Berreman’s energy (1) and ours (14) for K1 � K3.
Note that when ��mod�� � 0 or �=2, our result (14)
agrees with the Berreman’s (1), which is clear from the
fact that ny � 0 in this case [see Eq. (13)]. On the other

hand, when ��mod�� � 0 or �=2, our surface energy (14)
is always smaller than the Berreman’s energy (1), as seen
from Fig. 2. This arises from the fact that the Berreman’s
director profile, Eq. (6) together with ny � 0, cannot be the
equilibrium one. In the case of K1 � K2, the coupling
between ny and nz prevents ny � 0 from being the solution
of the Euler-Lagrange Eqs. (7) and (8). Even when K1 �
K2 (with ny and nz being decoupled), although the
Berreman’s profile now satisfies Eqs. (7) and (8), it is still
incompatible with the boundary condition (11).

Almost all of the experimental studies on azimuthal
surface anchoring summarize their results using the
Rapini-Papoular form of the surface energy [23], i.e.,
�1=2�Wsin2�, or �1=2�W�2 in the case of small � (W,
the anchoring strength, is KA2q3=2 in the Berreman’s
theory). Our result clearly indicates that W � 0, that is,
sinusoidal surface grooves cannot contribute to surface
anchoring in the Rapini-Papoular sense, so long as Aq is
small enough to allow the quadratic treatment of the Frank
energy (2). One can observe an almost flat energy mini-
mum at � � 0 in Fig. 2, which clearly reflects the absence
of the anchoring of Rapini-Papoular type.

Finally, we comment on why an apparent additional
distortion (ny � 0) can reduce the Frank elastic energy
(for simplicity, we discuss the director profiles in the
case of equal elastic constants, K1 � K2 � K3).
Berreman’s profile involves splay, twist and bend
deformations, whose contributions to elastic energy are,
respectively, given by f�Berreman�

1 � 1
8K1q

3A2sin2�,

f�Berreman�
2 � 1

8K2A
2q3sin2�cos2�, and f�Berreman�

3 �
1
8K3A

2q3sin4�. We note here that near the easy axis (� �
0), the dominant contribution to the total free energy, up to
the order of sin2�, comes only from the splay and the twist
modes. The nature of our profile is such that splay and twist
deformations are avoided as much as possible; in fact, twist
deformation is totally absent and the splay deformation
energy, f1 �

1
8K1q

3A2sin6�, is nonzero, yet is of the order
of sin6� near � � 0. The cost of this behavior is a slight
increase of bend energy to f3 �

1
8K3A2q3sin4��1�

cos2��, which makes a significant contribution only at
angles sufficiently away from the easy axis.

We have revisited the Berreman’s theory on the surface
anchoring of a nematic liquid crystal induced by surface
grooves. We have argued that the assumption in his theory
that the azimuthal distortion of the director is negligibly
small is not appropriate. Starting from the same setup of
the Berreman’s argument and properly taking into account
the azimuthal distortion of the director, we have shown that
the anchoring energy as a function of the angle � between
the director at infinity and the groove direction should
behave as sin4�, in remarkable contrast with the
Berreman’s result, sin2�. Berreman’s model is the simplest
one for the geometry-induced surface anchoring and most
of the theoretical studies to deal with the surface anchoring
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FIG. 2 (color online). Berreman’s anchoring energy (1) and
ours (14) as a function of � for K1 � K3.
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FIG. 1 (color online). (a) Our director profile (ny, nz) at x � 0,
projected onto the x � 0 plane. (b) Corresponding Berreman’s
director profile, with ny � 0. Here we have set � � �=4 and
K1 � K3 is assumed for both cases. The groove profile ��x; y� at
x � 0 is also shown. The projected vectors are drawn in an
exaggerated manner, and the units of length for the projected
director are the same for both figures.
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of geometrical origin begin with, or borrow ideas from it.
Moreover, given the recent growing interest in the experi-
mental attempts to utilize microscopically grooved sur-
faces to achieve desirable anchoring properties and also
in the underlying mechanism of surface anchoring, we
conclude this paper by emphasizing that the present theo-
ries on the geometry-induced surface anchoring and their
comparison with experiments must be carefully reconsid-
ered and reexamined.

The authors benefited from the discussions with Dr. J. S.
Gwag.
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