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According to the mosaic scenario, relaxation in supercooled liquids is ruled by two competing
mechanisms: surface tension, opposing the creation of local excitations, and entropy, providing the drive
to the configurational rearrangement of a given region. We test this scenario through numerical simu-
lations well below the Mode Coupling temperature. For an equilibrated configuration, we freeze all the
particles outside a sphere and study the thermodynamics of this sphere. The frozen environment acts as a
pinning field. Measuring the overlap between the unpinned and pinned equilibrium configurations of the
sphere, we can see whether it has switched to a different state. We do not find any clear evidence of the
mosaic scenario. Rather, our results seem compatible with the existence of a single (liquid) state.
However, we find evidence of a growing static correlation length, apparently unrelated to the mosaic one.
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It is common opinion that in finite dimension a diver-
gence of a relaxation time � at nonzero temperature is
associated to a diverging characteristic length �. The idea
is that when this length increases, relaxation proceeds
through the rearrangement of ever larger regions, taking
a longer and longer time. The relation between � and �
depends on the physical mechanism of relaxation. Two
main mechanisms are activated relaxation of a
 -dimensional droplet of size �, giving �� exp�A� =T�,
and critical slowing down, where �� �z [1].

Glass-forming liquids are tricky: relaxation times grow
spectacularly (more than ten decades) upon lowering the
temperature, without clear evidence of a growing static
cooperative length. In particular, density fluctuations are
thought to remain correlated over short distances close to
the glass transition (although there are some indications
that energy fluctuations might develop larger correlations
[2,3] ). Thus the concept of dynamic heterogeneities is
central to several theories of the glass transition [4–7],
where the role of order parameter is played by dynamic
quantities such as local time correlators, which become
correlated over the growing dynamic length scale �dyn. No
thermodynamic singularity is present in these theories.
Dynamic singularities are also typically absent at finite
temperatures, with the notable exception of Mode
Coupling Theory (MCT) [8], recently recast in terms of
dynamic heterogeneities [9]. Note, however, that the ex-
perimental values of �dyn [10–13] are barely in the nm
range, the same as density correlations [14].

The mosaic scenario (MS) [15–17], working within the
conceptual framework of nucleation theory, identifies, on
the other hand, a static correlation length. Deeply rooted in

the physics of mean-field spin glasses, the MS crucially
assumes the existence of exponentially many inequivalent
states exp�N��, below the Mode Coupling temperature
TMC (� is called complexity or configurational entropy,
and N is the size of the system). Suppose the system is in a
state � and ask: what is the free energy cost for a region of
linear size R to rearrange into a different state � with the
same free energy? According to the MS, there are two
opposing contributions: a surface cost due to the mismatch
of � and �, proportional to �R�, where � is a generalized
surface tension (� � d� 1), and an entropic gain propor-
tional to T�Rd, arising from the fact that the larger the
region, the higher the number of possible rearrangements.
This is similar to nucleation theory, with T� playing the
role of the free energy difference between the two phases.
For small droplets, the surface contribution dominates,
whereas for large R the volume contribution wins, and
eventually the rearrangement occurs. Thus, similarly to
nucleation theory, a length scale emerges, �mos �

��=T��1=�d��� fixed by the balance of the two contribu-
tions. A droplet with R< �mos may flip to a different state,
but the pinning field provided by the surrounding system
will make it flip back; for R> �mos the region is thermo-
dynamically favored to flip, but the larger R the longer the
time the rearrangement takes. �mos thus acts as the typical
cooperative length. Furthermore, by noting that �mos di-
verges at the temperature T0 where � vanishes, the MS
provides a rationale for the Vogel-Fulchner-Tamman
(VFT) law for the relaxation time, �� exp��=�T � T0��.

In this Letter we report a numerical test of the MS. For
this purpose, the formulation of Ref. [18] is particularly
convenient. Imagine picking a reference equilibrium con-
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figuration and freezing all particles except those within a
sphere of radius R (containing M particles). This region is
thus embedded in a very large box of frozen particles
which act as a pinning field. The key point of the MS is
that a sufficiently large sphere will be thermodynamically
favored to flip to a different state. If the reference configu-
ration is in state �, and calling � one of the exponentially
many different states, the MS gives [18]

 p���R�	
1

Z
exp��R�=T�; p���R�	

1

Z
exp��Rd� (1)

as the probabilities for the sphere to remain in the reference
state � and to flip to �, respectively [the normalization is
Z 	 exp��R�=T� 
 exp��Rd�]. The mosaic fragmenta-
tion of a state into regions of size �mos corresponds to an
exponentially sharp jump from p�� � 1 to p�� � 0 at R�
�mos [18]. Let us call the configuration of the sphere
thermalized with a given environment the pinned equilib-
rium state of the sphere. If we define a suitable overlap q to
measure the similarity in phase space between this pinned
state and the reference state �, the MS predicts

 qMS�R� 	 p���R�q�� 
 p���R�q0; (2)

where q�� is the self-overlap of state � and q0 is the typical
overlap between different states. Thus within the MS one
expects a first order transition [19], where qMS�R� drops (or
at least makes a crossover) at �mos from q�� to q0. Note
finally that for large R the overlap decays exponentially,
qMS�R� � q0 � exp����Rd � YR�=T��.

We have realized this gedanken experiment for the soft-
sphere binary mixture [20], a simple fragile glass former
(see Ref. [21] for an attempt to find a mosaic length scale in
spin models using this formulation). We used the swap
Monte Carlo algorithm [22] (for simulation details, see
Ref. [23] ). Equilibration time is considerably shortened,
so we can perform equilibrium simulations of large sys-
tems well below TMC 	 0:226 [20,24]. This is important,
since in the standard MS TMC acts like a spinodal tempera-
ture [15], above which there are not many states and the
surface tension is zero [25]. We first equilibrated systems
both of 2048 and of 16384 particles, then picked reference
configurations used to equilibrate M particles within the
sphere while keeping the remaining frozen. We studied
M 	 5, 20, 50, 100, 200, 400, 800, 1600, 3200, and 5500
at temperatures T=TMC 	 4:42, 2.13, 1.54, 1.15, 0.94,
and 0.89. The largest R was 10.95, 1 order of magnitude
larger than the particle size. Though reminiscent of the
work of Ref. [27], we focus on static rather than dynamic
quantities.

To introduce the overlap between the reference state �
and the pinned state of a sphere of radius R, we divide the
space in cells of side l and define

 q�R� 	
1

M

X
i

hn���i ihn
�pin�
i i; (3)

where ni is the occupation number of cell i. The sum runs
over all the cells in the sphere and M 	 4=3�R3�.
Occupation numbers are averaged over many independent
configurations, both of state � (between 4 and 16) and the
pinned state (10 to 100). The overlap of two identical
configurations of the sphere is q 	 1, whereas for two
independent configurations q 	 q0 	 �, with � 	 �l3. l
is such that �� 1, but larger than the typical vibrational
amplitude of the particles [23]. Here � 	 0:06.

Our results for q�R� are shown in Fig. 1 at four different
temperatures, two above and two below TMC. The first
feature we notice is that q�R� is always a smooth function,
with no clear jump nor evident crossover values of R. Yet
even at the lowest temperature, q becomes as low as 0.2 at
the largest value of R, showing that the sphere has in fact
largely decorrelated with respect to the reference state �.
This means that whatever the correct relaxation mecha-
nism at low temperatures, this mechanism is at work here,
since on average 80% of the particles have rearranged at a
temperature well below TMCT. Moreover, q�R� does not
seem to decay exponentially to � for large R, but rather as a
power law (see later). Finally, there is no clear indication of
a plateau corresponding to the self-overlap q��. Not sur-
prisingly, a mosaic fit of the data, using Eqs. (1) and (2),
gives unphysical values of the parameters, in particular, a
negative value for the complexity � and of the surface
tension �.

Three objections can be raised at this point. First, the
spheres are not large enough; the mosaic drop takes place
for �mos larger than our largest R. To this there are two
replies: first, �mos should decrease for increasing T, so it is
unclear why we do not see anything while approaching
TMC from below; second: as already said, the largest sphere
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FIG. 1. Overlap q�R� for T=TMCT 	 4:42 (circles), 1.54
(squares), 0.94 (triangles), 0.89 (inverted triangles). The largest
value of R corresponds to M 	 5500 particles in the sphere.
Lines are the fit from the 1S argument [Eq. (6)]. Inset: data for all
temperatures scaled according to Eq. (6).
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has largely decorrelated, so if the mosaic bit of decorrela-
tion still has to come, it will contribute only to 20% of the
rearrangement. Second objection: the equilibration time of
the sphere is longer than our runs, and our results for q�R�
are obtained in a metastable region. To check this, we have
repeated the simulations but initializing the sphere in a
different equilibrium state �, having zero overlap with the
reference state �. What we find (Fig. 2, right) is that the
overlap as a function of time increases, thermalizing at the
same value as when starting within the same state �. Thus,
even for the largest R, the asymptotic value of q�R� does
not depend on the initial configuration of the sphere and
there is no hysteresis. Third objection: the lowest tempera-
ture is not low enough, it is too close to TMC, and the
mosaic mechanism is not yet at work. We cannot exclude
this. However, at our lowest temperature, standard molecu-
lar dynamics is completely stuck, so one would expect the
MS to describe the relaxation. Besides, an estimate of T0

from a VFT fit of the relaxation time gives T0 � 0:80TMC

(see Fig. 2, left), so one would really expect the mosaic
mechanism to be operating at these temperatures.

If we give up the key assumption of the MS, that is the
existence of many states at low temperature, we can inter-
pret our data as relaxation within a single state with self-
overlap equal to �, i.e., the liquid state. The argument goes
as follows. Let us divide the sphere in shells of radius r.
From Eq. (3) we have

 q�R�	
1

4
3�R

3�

Z R

0
dr

4�r2

l3
hq�r�i	

3

R3

Z R

0
drr2G�r�; (4)

where G�r� 	 hq�r�i=� is the average overlap per unit
volume between the state � and the asymptotic pinned
state, at distance r from the center of the sphere. The effect

of the pinning border at the center of the sphere is expected
to decay as exp��R=	�, where 	 is a correlation length
[28]. If we say that the unpinned state (the liquid) has self-
overlap � and we assumeG�r 	 R� 	 1 (sticky boundary),
a reasonable form for G�r� is given by

 G�r� 	 �1� ��e��R�r�=	 
 �: (5)

Plugging G�r� into Eq. (4), and having defined x � R=	,
we obtain the one-state (1S) overlap,

 q1S�R� 	 3�1� ��
�

1

x
�

2

x2 

2�1� e�x�

x3

�

 �: (6)

This function describes the relaxation within a single state
with self-overlap, �, and it is quite different from the MS
form [Eq. (2)]. In particular, q1S�R� � �� 	=R, for large
R. In Fig. 1 we report the fit to the data obtained with the 1S
overlap, which seems quite reasonable [29]. The only
fitting parameter is the correlation length 	, which in-
creases by a factor 7 with decreasing T in our temperature
span (Fig. 3).

We can test assumption (5) by studying, at fixed R, the
average overlap as a function of the distance r from the
center (Fig. 3, inset). We plot log��G�r� � ��=�1� ���
versus R� r, for two different values of R, at our lowest
T. The data are compared to our guess Eq. (5), with 	
obtained from the fit of q�R�. The agreement is reasonable.
Another test is to plot �q1S�R� � ��=�3� 3�� versus R=	,
where according to (6) data for all temperatures should fall
on a single master curve. Again (Fig. 1, inset) we find a
nice agreement. We note that the correlation function G�r�
is a kind of the ‘‘point-to-set’’ correlation functions de-
scribed in [30]. Other than testing the MS, it seems from
our results that G�r�may be a useful tool to detect growing
spatial correlations in supercooled liquids.
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FIG. 2. Left: Relaxation time vs temperature for MC swap
dynamics and VFT fit. � is an integrated relaxation time obtained
from the coarse-grained density autocorrelation studied in
Ref. [23]. Right: instantaneous overlap vs time for � and �
initial configurations of the sphere (T 	 0:89TMC, M 	 5500).
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our prediction, Eq. (5).
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The one-state decay of q�R� described above should in
fact be used also in the small R regime of the mosaic
scenario. This modifies Eq. (2) as follows:

 qms�R� 	 p���R�q1S�R� 
 p���R��; (7)

where now the limiting self-overlap of q1S�R� for R! 1 is
q��, hopefully larger than � in a multistate scenario. Thus,
the correct mosaic prediction is that the relaxation of the
sphere within state � is ruled for small R by q1S�R�, but it is
interrupted at R 	 �mos by the entropic drive kicking in,
such that q�R� ! � for R> �ms. We have tried Eq. (7) to fit
the data of Fig. 1, leaving � fixed to avoid having too many
parameters. For � 	 2 and � 	 3=2 (two values one might
expect [16] ), the fits locate the mosaic drop just beyond the
largest simulated size, with q�� � �. This makes the mo-
saic fit rather awkward. In our opinion, given the present
data, it is more natural to conclude that � is the (unique)
liquid state, with self-overlap �, and that there is no mosaic
drop beyond our largest R.

We have studied the themodynamics of a sphere em-
bedded in a frozen equilibrium environment. Our data are
compatible with the naı̈ve expectation that the inner shells
of the sphere decorrelate and rearrange more than the outer
shells close to the border. The penetration scale of the
pinning border is given by a length 	, which increases
sharply with decreasing temperature. In the paramagnetic
phase of the Ising model, 	 diverges for T ! Tc, just as the
standard correlation length [31]. This means that 	 has
physical significance and begs for an investigation of the
relation between 	 and � also in glass formers. Such an
investigation, however, would require a finer resolution of
	�T� around and below TMC, which we leave for a future
study. The length 	 is neatly defined through the novel
correlation function G�r�. Our study is purely thermody-
namic, and for this reason we do not see any crossover at
the Mode Coupling temperature.

Our data do not show any clear evidence for the mosaic
mechanism. There is the possibility that the experiment or
the observable considered are not the most suitable. For
example, if the mosaic excitations are highly noncompact
or fractal [32], it may be argued that a different experiment
would be needed. Having said that, we remain with the
impression that the one-state scenario fits reasonably well
with our data. Either there is no surface tension or it is very
weak and diluted over a wide region across the border. This
suggests that, if a multistate scenario is valid, a version
more sophisticated than the one here tested is needed. This
novel description should not only reproduce the numerical
data, but fit them significantly better than the single-state
scenario.
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