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Electron fractionalization is intimately related to topology. In one-dimensional systems, fractionally
charged states exist at domain walls between degenerate vacua. In two-dimensional systems, fractional-
ization exists in quantum Hall fluids, where time-reversal symmetry is broken by a large external magnetic
field. Recently, there has been a tremendous effort in the search for examples of fractionalization in two-
dimensional systems with time-reversal symmetry. In this Letter, we show that fractionally charged
topological excitations exist on graphenelike structures, where quasiparticles are described by two flavors
of Dirac fermions and time-reversal symmetry is respected. The topological zero modes are mathemati-
cally similar to fractional vortices in p-wave superconductors. They correspond to a twist in the phase in
the mass of the Dirac fermions, akin to cosmic strings in particle physics.
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In low-dimensional systems, the excitation spectrum
sometimes contains quasiparticles with fractionalized
quantum numbers. A famous example of fractionalization
was obtained in one dimension (1D) by Jackiw and Rebbi
[1] and by Su, Schrieffer, and Hegger [2]. They showed the
existence of charge e/2 states, with polyacetelene as a
physical realization of such phenomena. In these systems,
a charge density wave develops and the ground state is
twofold degenerate. The fractionalized states correspond to
midgap or zero-mode solutions that are sustained at the
domain wall (a soliton) interpolating between the two-
degenerate vacua.

The fractional quantum Hall effect provides an example
of fractionalization in two dimensions (2D). Not only do
the Laughlin quasiparticles have fractional charge [3], but
they also have fractional (anyon) statistics [4,5]. Time-
reversal symmetry (TRS) is broken due to the strong
magnetic field, leaving as an outstanding problem the
search for systems where fractionalization is realized with-
out the breaking of TRS. The motivation for such a quest
stems from speculations that fractionalization may play a
role in the mechanism for high-temperature superconduc-
tivity [6—8]. Progress has been made on finding model
systems, such as dimer models, in which monomers’ de-
fects act as fractionalized (and deconfined, in the case of
the triangular lattice) excitations.

In this Letter, we present a mechanism to fractionalize
the electron in graphenelike systems that leaves TRS un-
broken. The excitation spectrum of honeycomb lattices,
which have been known theoretically for a few decades to
be described by Dirac fermions [9,10], is now the subject
of many recent studies since single and few atomic-layer
graphite samples have been realized experimentally [11].
Quantum number fractionalization is intimately related to
topology and here we find that a twist or a vortex in an
order parameter for a mass gap gives rise to a single
midgap state at zero energy. Such twist in the mass of the
Dirac fermions in graphenelike structure is the analogous
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in 2 + 1 space-time dimensions of a cosmic string in 3 + 1
dimensions [12].

The zero modes we find are, in their mathematical
structure, similar to those found in p-wave superconduc-
tors by Read and Green [13] and to those found by Jackiw
and Rossi [14] when demonstrating topological excita-
tions and suggesting an index theorem in 2D (see also
Ref. [15]). In Refs. [13-15], a twist in the phase of a
superconducting order parameter and a charge 2e¢ Higgs
boson, respectively, were considered and thus the electric
charge assigned to the zero-mode is not a good fractional
quantum number. Instead, in the systems we study, the
electronic charge is conserved and therefore we can show
that it is fractionalized by properly tallying it.

We find only one normalizable state for each vortex,
despite the two flavors of Dirac fermions in honeycomb
lattices. The fact that there is one and not two zero modes is
essential for fractionalization: doubling the number of zero
modes due to two flavors of Dirac fermions, in addition to
the spin degeneracy, would lead to excitations with the
same quantum numbers as ordinary electrons. We find
excitations with charge Q = ¢/2 in the spinless case, and
charge Q = e and spin S = 0 or charge Q = 0 and spin
S = 1/2 in the case with spin. Hence, these fractionalized
quantum numbers are similar to those in polyacetelene, but
the counting is different in 1D and 2D, and as we will
discuss, there is a U(1) symmetry underlying the fraction-
alization in the 2D case which would not lead to fraction-
alization in 1D (in which a Z, symmetry is underlying the
effect).

The mechanism for fractionalization can be portrayed in
a simple form by considering spinless electrons hopping on
a honeycomb lattice with textured tight-binding hopping
amplitudes and described by the Hamiltonian

3
H=- Z Z(t + 5tr,i)a;rbr+s‘. + H.c (1)

reA, i=1
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Here, s; with i = 1, 2, 3 connects any site r belonging to
the triangular sublattice A4 to its three nearest neighbors
belonging to the triangular sublattice A z of the honeycomb
lattice as is depicted in Fig. 1. The fermionic annihilation
operators a, and b, act on A, and Ay, respectively, and so
do their adjoints. Graphene is often described by
Hamiltonian (1) in the single-particle approximation, ne-
glecting the spin of the electron and assuming ot,; = 0.
We are going to show that the small variations of the
hopping strength, 6¢, ;, over the uniform hopping ¢ provide
the background on which fractionally charged states can be
constructed. We then discuss how such 67, ; can arise from
a local order parameter that decouples electron-electron
interactions.

When 6t,; =0, Hamiltonian (1) can be diagonal-
ized in momentum space, H = qu)kaltbk + H.c., &, =
—1Y3_, €. The single-particle spectrum g, = *|d;]
thus contains two (zero-energy) Dirac points at the
zone boundaries K. = i(%, 0). After linearization,

k= K. + p, one obtains a spectrum containing two
chiral flavors +, H = Zp,iqﬁpa;ibp,i +Hec., ¢+ =
*vp(p, * ip,) with the Dirac conelike structure £ (p) =
*+vp|p| for the energy dispersion. (Hereafter, vy = 1.)

We shall focus on backgrounds that yield a chiral mixing
between the * species. A Kekulé texture, depicted in
Fig. 1, provides such a mixing [16]. The modulation

8ty; = A(r)e’K+sieiGT/3 + c.c., (2)

with wave vector G := K. — K_, couples the Dirac
points at K. as is depicted in Fig. 2. Here, we allow for
spatial fluctuations (on length scales much longer than the
lattice spacing a) of the complex-valued order parame-
ter A(r). The phase of A(r) controls the ordered hop-
ping texture. To leading order in a gradient expan-
sion, Hamiltonian (1) subjected to the Kekulé texture (2)
is given by H = [d*r¥1(r) Kp(r)¥(r) with ¥i(r) =
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FIG. 1 (color online). The honeycomb lattice A with lattice
spacing a and its two triangular sublattice A, (red) and Ag
(blue). The generators of A, are a; and a,. The three vectors s;
connect any site from A, to its three nearest-neighbor sites
belonging to Ap. The Kekulé distortion is a modulation of the
nearest-neighbor hopping amplitude that is indicated by repre-
senting nearest-neighbor bonds of the honeycomb lattice in black
(gray) if the hopping amplitude is large (small).
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We are using the notation z = x + iy, 9, = (9, — id,)/2,
with an overline to denote complex conjugation. Without
the Kekulé texture (2) leading to A(r), the Dirac kernel (3)
is the single-particle relativistic —massless Dirac
Hamiltonian in 2 + 1 space-time. With the Kekulé texture
(2) A(r) = Ay, the dispersion takes the simple form
e+(p) = =/Ipl* + 1A% i.e., a single-particle mass gap
|Ay| has opened. The Dirac kernel (3) is TRS. TRS origi-
nates in the tight-binding hopping elements being real.
Moreover, the transformation law under a, — —a, and
byis, = +b, s of the single-particle tight binding (1)
ensures that any positive energy eigenstate of the Dirac
kernel (3) can be matched to a negative energy eigenstate,
while only zero modes can be left unmatched. We shall call
this property sublattice symmetry (SLS) [17].

The order parameter A(r) = A, can be complex valued,
but the spectral mass gap is real. This suggests that the
phase of A, is redundant. In fact, it can be removed from
Eq. (3) with a chiral transformation that rotates the phases
of the * species by opposite angles. This is not true any-
more if the phase of the order parameter A(r) varies in
space, and, in particular, if it contains vortices. The latter
situation leads to fractionalization.

We assume that

A(r) = Ag(r)eiesn?, 4

where Ay(r) > 0, n € Z for a single-valued order parame-
ter, and we are using the polar coordinates z = rexp(if).
We are seeking eigenstates of the Dirac kernel (3) with
vanishing energy that are normalizable, i.e.,

FIG. 2 (color online). The first Brillouin zone of the triangular
lattice is shown together with the Dirac points K. at the zone
boundary, the reciprocal vector G that connects them, and the
massive relativistic dispersion centered about K . that opens due
to a Kekulé distortion with A(r) = A,.
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0, —ir 'ayu,(r) + ie A(r)v,(r) =0, (5a)
ie A u,(r) — (0, + irtayv,(r) =0, (5b)

holds on sublattice A 4 while two more equations obtained
from Eq. (5) with the substitutions u, — u,, v, — v, and
6 — — 0 must also hold on sublattice Az. The same equa-
tions were studied in Refs. [13,14] from a different per-
spective since the textured gap in these works is associated
to a superconducting order parameter. Hence, electric
charge is not a conserved quantum number in
Refs. [13,14]. There are |n| independent normalizable
zero modes, which are either supported on sublattice Ay,
when n = —1 or on sublattice Ag when n = 1.

We assume that n = —1 in which case the single-valued
and normalizable wave functions for the zero mode is

eil(@/2)+(m/4)] o Jodrdo)

N \/ [ drre”? fiarso® (6
v,(r, 0) = ii,(r, 6).

uy(r, 0) =

Its support is on sublattice A4. The zero mode when n = 1
is obtained from Eq. (7) with the substitutions u,(r, ) —
v,(r, ) and v, (r, ) — u,(r, ). When n = 1, the support
of the zero mode is on sublattice A z. The wave function (7)
decays exponentially fast away from the core of the vortex
(4) at the origin of the complex plane. Its localization
length is set by the gap value A, reached when Ay(r)
saturates sufficiently far from the origin. If the Kekulé
texture (2) supports a pair of vortices a large distance R
apart, then the Dirac kernel (3) has two eigenstates whose
energy eigenvalues are exponentially small.

To obtain the charge bound to a vortex, one has to study
ov(r, &) = vj,=1(r, &) — v},—o(r, €), where v, (r, ) is the
local density of states (LDOS) of the Dirac kernel (3) in the
presence of the mass twist (4). Because of the SLS, to any
negative eigenstate of the Dirac kernel, _.(r), there cor-
responds a positive energy state, i, .(r), related to _ . (r)
by a unitary transformation. Hence, the LDOS v(r, &) =
S 1//1, (r) i (r)d(e — &) is symmetric with respect to
zero energy and negative and positive energy eigenstates
contribute equally to the local density v(r)=
lim,_,e f Tede'v(r, €). In the presence of the zero mode
o (r) this spectral symmetry together with the conserva-
tion of the total number of states imply

fd%[z fio Sv(r, £)ds + |¢0(r)|2} -0 @

But the single zero mode i,(r) is normalized to one and
f Lr ﬁ)w Su(r, e)de = —1/2. )
According to Eq. (8), the valence band has a deficit of half

of a state, as does the conduction band. Thus the difference
in net charge between a fully occupied valence band with

and without the vortex is —e/2. The total charge of a
closed system must still be an integer. This can be under-
stood as follows. Vortices must be present in pairs (for
example, if a finite system is to satisfy periodic boundary
conditions or for energetic reasons in the thermodynamic
limit), and while the charge around each vortex is half that
of an electron, the fact that the vortices appear in pairs
ensures that the total charge is an integer multiple of e. The
mechanism for fractionalization is similar to that in 1D
[18], but there the fractional charge stands in domain walls
between two degenerate vacua, which must appear in pairs
(again if the system is to satisfy periodic boundary con-
ditions). In 1D, however, one needs a discrete symmetry to
fractionalized charge. For example, for charge e/2 states
one needs a Z, symmetry, which can be understood ge-
nerically in terms of an accumulation of charge along
phase twists that have a natural interpretation within a
bosonization scheme [19]. These arguments do not extend
to 2D, which is our concern in this Letter, as there is no
simple connection between phase twist and charge as in the
1D bosonization scheme. The fact that the fractional states
must occur in pairs, nonetheless, follows from the common
requirement for the U(1) mass vortices in 2D and the Z,
domain walls that these defects occur in pairs to satisfy
appropriate boundary conditions.

In the case of electrons with spin, two independent zero
modes that carry the spin quantum number are expected.
Hence, there is, in total, a full electronic state missing in
the valence band for each vortex. Consequently, unoccu-
pied, singly, and doubly occupied zero-energy states cor-
respond to the charge and spin quantum numbers
(O=—-¢,5=0),(0=0,5=1/2),and (Q = +e, S =
0), respectively. Notice that, had we obtained fwo normal-
izable solutions for a vortex or an antivortex as opposed of
one as in Eq. (6), all the quantum numbers would be
“doubled” and simply coincide with those of ordinary
electrons.

These arguments for fractionalization require existence
of the midgap state and the SLS of the spectrum. SLS is
broken when a next-nearest-neighbor hopping ¢ is intro-
duced. A ¢ brings an overall shift and a quadratic term
into the diagonal sector of the Hamiltonian, 8 H' = (3¢ +
# p?)1, up to second order in p. This perturbation alters
the energy spectrum, but Dirac points (in the absence of the
background) remain when the system is at half filling. The
textured background still opens a gap at the Dirac points
and there is a midgap state if there is a mass twist.
However, the midgap state is not exactly at the center
between the valence and conduction bands, being shifted
by eV = %AO to first order #'. As long as this shift is
small compared to the gap, the midgap solution is robust
against breaking of the SLS. The fractionalized quantum
number persists along with the single bound state, but
the argument for charge ¢/2 is not valid. Starting from
zero ', turning it adiabatically, one can argue that fraction-

186809-3



PRL 98, 186809 (2007)

PHYSICAL REVIEW LETTERS

week ending
4 MAY 2007

alization should remain but take irrational values as in 1D
[20-22].

We now turn to a mechanism for generating spontane-
ously the Kekulé distortions from repulsive electron-
electron interactions. We assume the nearest-neighbor in-
teraction H' := =VY e\ >3 al b,+sjb;f+sja, with V the
interaction strength. Evidently, this interaction preserves
TRS, the point-group symmetry of the honeycomb lattice,
and SLS (up to the total number operator). After lineariza-
tion around the unperturbed Dirac points, a mean-field
decoupling of this interaction with respect to the order
parameter

- %A — B+ 5)a. () = (@t (b1 (r +5) 9

coincides with the case of the Kekulé distortions. If the
system is at half filling and zero temperature, all negative
energy states are occupied and the self-consistent equation

exp(ip- s;)
follows. The sum can be replaced b
20 Jppiar VIpP+IAP P Y
an integral up to an appropriate momentum cutoff, Aa ~

271/2
S

in the effective theory to that in the microscopic theory. As
this integral converges even without the |A|? term, neglect-

ing it yields 1 = 3‘/;|‘I/|A“ [Jo(Am)H_;(Aa) — J_;(Aa) X
Hy(Aa)]. Here, J,(z) is a Bessel function and H,(z) is a
Struve function. Insertion of the numerical value for Aa
then yields the lower bound V, = 5=l = 1.906]1|. Self-
consistency demands a repulsive interaction. (The very
same mean-field theory also renormalizes the uniform
hopping: t — ¢ + ¢, 6t ~ 0.1V.) We note that the condi-
tion for the Kekulé pattern to form could potentially be
engineered in a gas of dipolar fermionic atoms trapped in
an optical honeycomb lattice, where the ratio V/r could be
tuned.

At last, we need a vortex on top of the Kekulé distortion
(2) for fractionalization to happen. Here, we face a diffi-
culty in that the chiral symmetry of Eq. (3) is an artifact of
the linearization. Integration of the fermions on the lattice
yields an effective action for the phase of A with a discrete
symmetry Z5. Vortices are then confined at sufficiently
long distances due to a pinning potential for the phase of
A. Fractionalization can only be observed on length scales
much larger than A, yet much smaller than the confining
length scale, a function of Ay/¢. This difficulty can be
overcome by a small breaking of the point-group symmetry
of the honeycomb lattice by assuming anisotropic hopping
between nearest-neighbor sites. By continuity, the only
effect of such a small anisotropy is to move the Dirac
points away from the boundaries of the first Brillouin
zone, as is confirmed by an exact computation of the
spectrum in Ref. [23]. The Kekulé wave vector G in
Eq. (2) is then not anymore commensurate to the reciprocal

ZIAAI

here chosen so as to match the total number of states

lattice, integration over the fermions does not produce a
pinning potential for the phase of Kekulé modulation, and
vortices can proliferate as a result of temperature-induced
fluctuations (their bare logarithmic interaction is screened
for temperatures above the Kosterlitz-Thouless transition
temperature).

In summary, we presented a mechanism in graphenelike
2D condensed matter systems that realizes charge fraction-
alization with TRS. The mechanism is based on an effec-
tive low-energy Hamiltonian of the Dirac type with a
textured mass with phase twists due to vortices. When
the vortices are far apart, each vortex carries a zero-mode
responsible for local charge fractionalization. This mecha-
nism is a condensed matter 2 + 1 space-time analogue to
3 + 1 space-time cosmic strings.
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by the NSF Grant No. DMR-0305482 (C.-Y.H. and C. C.).
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