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We investigate the Fock-Darwin states of the massless chiral fermions confined in a graphitic parabolic
quantum dot. In light of Klein tunneling, we analyze the condition for confinement of the Dirac fermions
in a cylindrically symmetric potential. New features of the energy levels of the Dirac electrons as
compared to the conventional electronic systems are discussed. We also evaluate the dipole-allowed
transitions in the energy levels of the dots. We propose that in the high magnetic field limit, the band
parameters can be accurately determined from the dipole-allowed transitions.
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Quantum dots (QDs), or the ““artificial atoms” [1] are
one of the most intensely studied systems in condensed
matter physics where the fundamental effects related to
various quantum phenomena in confined geometries can be
studied but with the unique advantage that the nature of the
confinement and the electron density can be tuned exter-
nally. However, much of the interest in this system derives
from its enormous potentials for applications, ranging from
novel lasers to quantum information processing. While the
majority of the QD systems investigated are based on the
semiconductor heterostructures, in recent years, quantum
dots created in the carbon nanotubes have been reported
in the literature where the ‘“‘atomic’ properties [2] were
clearly elucidated and its importance in technological ap-
plications was also demonstrated [3]. Conductance prop-
erties of ultrathin graphitic QDs [4] have also been
reported recently. It is now well recognized that the low-
energy dynamics of the two-dimensional electrons in gra-
phene is governed by the Dirac-Weyl equation, and the
charge carriers behave as massless chiral fermions [5,6]. In
this situation, confinement of electrons becomes quite a
challenging task, due to the so-called Klein paradox [7].
This problem has been dealt with in the case of a one-
dimensional (1D) wire at zero field [8—10] and at finite [11]
magnetic fields. In this Letter, we report on the electronic
properties of the parabolic QDs in graphene. In particular,
we present the energy levels as a function of the magnetic
field (Fock-Darwin states [1]) and the associated dipole-
allowed optical transitions in this system. We propose that
the optical spectroscopy of the graphene QD in the high-
field limit could provide an accurate means of determining
the band parameters of graphene.

The Hamiltonian of a single electron in graphene with a
cylindrically symmetric confinement potential is

H=H,+H, =%(5’77)+V(r), (1)
where & are the Pauli matrices, 7 = p + fA), A =2 x
(—y, x) is the vector potential corresponding to the mag-

netic field B in the z direction orthogonal to the graphene
plane, and y = v/3a7y,/2 is the band parameter. Here a =
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0.246 nm is the lattice constant and vy, (meV) is the trans-
fer integral between the nearest-neighbor carbon atoms
[12]. Properties of such systems have been studied inten-
sively for the massive relativistic electrons [13], for which
there are bound states in the external potential.

First we analyze the properties of the graphene system in
the absence of a magnetic field to find the condition for
confinement of an electron in the potential V(r). Because
of Klein tunneling the electrons in graphene cannot be
localized by a confinement potential, since for any poten-
tial there will be the electron states with negative energy
(the hole states) which would provide the escape channel
for the electron inside the potential well. We can then
discuss only the quasilocalized states or trapping of the
electron by the confinement potential. This problem has
been treated for the quasi-1D graphene system [8,14],
where it was shown that the transverse momentum in 1D
introduces the classically forbidden regions, which helps in
trapping the electron. The width of the quasilocalized level
is determined by the tunneling through the classically
forbidden regions. For the zero transverse momentum,
the tunneling barriers disappear and there are no trapped
states. In our case, we have a cylindrically symmetric con-
finement potential with the effective transverse momentum
m/r, where m is the electron angular momentum. There-
fore, for m # 0 we expect the trapping of an electron by a
cylindrically symmetric QD. In terms of the two-
component wave function (y;(r)e’™ =D y,(r)e™?), the
Schrodinger equation corresponding to the Hamiltonian
(1) is
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There are no analytical solutions to these equations; there-
fore, we first present below a semiclassical analysis.

Semiclassical analysis.—At a large m we seek a solu-
tion of Egs. (2) and (3) in the form e?", which gives

(E—-V/y?=m/r?+ ¢ 4
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The classical turning points can be found from the condi-
tion ¢ =0, and the classical region is |E — V(r)| >
v|m|/r. If ry is the solution of the equation E — V(r) =
0 then we can find the classically forbidden region as
(ro — Ar)<r<(ry + Ar), where Ar=m/Fr,, F=
y~1dV(ry)/dr, and we assumed that F >> m/r3. If the
electron is trapped in the dot, i.e., at r < ry — Ar, then
the escape rate or the width of the quasilocalized levels is
determined by tunneling through the classically forbidden
region,

ro r 2
T = exp(—f +A |q(r)|dr> = exp<— i ) (5)

O—Ar 2Fr(2)

Therefore, in order to trap the electron we need a large m
and a small F, i.e., a smooth confinement potential. For a
potential V = (u/n)r?, Eq. (5) takes the form

mTym? Tm?

e el e
where €, = (y”u/p)"/P*1. Equation (6) gives the upper
limit on the energy of the quasilocalized levels at a given
m,ie., E/e, < m?2r/(P*1)_Based on the semiclassical ex-
pression we can also find the interlevel separation of the
quasilocalized levels at large energies, AE, =
aep(E/ep)*l/P, where @ ~ 1. We then estimate the num-
ber of quasilocalized levels N, ,, for a given angular mo-
mentum m and a given potential profile from

_ m2r/(p+) G| P 2 . . . . .
Npm o AE, T priMm This estimation is valid

for large m. For a small m we need to solve the system
of equations (2) and (3) numerically to find the properties
of the quasilocalized states.

Quasilocalized states: Numerical solutions.—At small
m, the system of equations (2) and (3) can be solved only
numerically. To extract the information about the width of
the quasibound levels we need to impose special boundary
conditions far from the QD. This condition means that far
from the origin, r >> r, the solution should be an outgoing
wave, i.e., the propagation away from the QD [15]. Clearly
[Egs. (2) and (3)] for r > r the outgoing solution is

i) = —xalr) = Cexp(é f ' V(r')dr’), %)

T = exp|:—

where C is a constant. Equation (7) is the boundary con-
dition for the system (2) and (3) at large distances. Since at
r = 0 the solution should be nondivergent, another bound-
ary condition is y;(r = 0) = y,(r = 0) = 0. A solution
with these boundary conditions exists only for a complex
energy E. The imaginary part of the energy determines the
width of the quasilocalized level.

We have solved Egs. (2) and (3) numerically for a
potential of the form V(r) = (%)r” for different values of

the exponent, p, and for different values of the angular
momentum m. In dimensionless units, i.e., for the units of
length and the energy, a, = (py/u)/?*) and €, =
(yPu/p)"/ P+ respectively. By numerically solving

Egs. (2) and (3) we want to illustrate the formation of the
quasilocalized states at small m and find the values of the
angular momentum when we should expect the trapping of
an electron by the QD. The results are shown in Fig. 1,
where only the states with the smallest imaginary part of
the energies, i.e., a small width of the levels, are shown.
These states are the quasilocalized states of the QD. The
manifestation of such states can be found already at m = 2
(circles), both for p = 2 [Fig. 1(a)] (parabolic) and p = 4
[Fig. 1(b)]. The strength of the localization can be charac-
terized in terms of the ratio of Im(E) to the interlevel
spacing. For m = 2 this ratio is 50. With an increase of
the angular momentum the quasilocalized states become
well developed and at m = 10 we clearly see the states
with very low Im(E). The ratio of Im(E) to the interlevel
spacing for these states is about 800, while for m = 5 this
ratio is about 200. With an increase of the energy the states
are less localized; i.e., Im(E) increases and is consistent
with Eq. (6). Note that for all values of the exponent p there
are no localized states at m = 1 [inset of Fig. 1(a)]. All the
states at m = 1 have very large Im(E). There are also no
quasilocalized states at m = 0. The reason for delocaliza-
tion of the electron at m = 0 and 1 is that the effective
transverse momentum for either the y; component (at m =
0) or the y, component (at m = 1) is zero. Based on the
results shown in Fig. 1, we conclude that already at m > 5
we can observe trapping of the electron by the QD. At a
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FIG. 1. The real and imaginary parts of the energy spectra of

an electron in a QD with a confinement potential V(r) =
(u/p)rP, shown for various values of the exponent p and the
angular momentum m: (a) p = 2, m = 2 (open circles), and p =
2, m = 10 (solid circles); (b) p = 4, m = 2 (open circles), p =
4, m =5 (stars), and p = 4, m = 10 (solid circles). The results
for p =2 and m = 1 are shown in the inset. The energy is in
units of €,,.
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smaller angular momentum the electron will be almost
delocalized. In what follows, we analyze the magnetic field
effects on the electronic states of the QDs.

Magnetic field: Semiclassical analysis.—In a magnetic
field, the system of equations (2) and (3) has an additional
nondiagonal term proportional to the magnetic field. In the
dimensionless units, i.e., for the units of length a,, and the
energy €, the system is characterized by only one parame-
ter, b = (eB/2c)(py/u)? PV, In the semiclassical ap-
proximation, the effective transverse momentum is
(m/r+ br) and Eq. (4) becomes T = exp[—m(m +
bE?/P)?/pEPTV/P] where E = E/€,. The effect of the
magnetic field is different for the states with a positive or
a negative m (the sign of m depends on the direction of a
magnetic field). For a positive m the application of a
magnetic field increases the effective transverse momen-
tum and suppresses the tunneling from the QD. For a
negative m, the magnetic field decreases the transverse
momentum. Therefore the state becomes less localized. If
we increase the magnetic field even further then at some
point, b = m/ E2/? | the level becomes delocalized, and at
an even larger B the level again becomes localized. Now
the trapping will be due to the magnetic field. Therefore for
a negative m, the magnetic field induces a localization-
delocalization-localization transition. The physical origin
of this effect is in the specific feature of localization of a
relativistic electron in a confinement potential. The local-
ization is due to the presence of the transverse momentum
which produces the trapping barrier. Without a magnetic
field this transverse momentum is due to the electron
angular momentum m. Magnetic field introduces an addi-
tional rotation of the electron. If this rotation is opposite to
the rotation due to m then at first the magnetic field
suppresses the localization and then it becomes the main
source of the electron rotation that results in the
localization.

The number of the quasilocalized states in a weak mag-
netic field is estimated to be N, ,, ~ [m + b|m|*/(P*D]2,
This number with a positive m increases with an increas-
ing magnetic field, while that for a negative m decreases
with the magnetic field up to a certain value of B and
then increases. The total number of states with positive
and negative angular momenta, N,, + N, _, ~ m? +
b2m|¥®*V always increases with an increasing B.
From this behavior we expect the following effect: We
assume that the QD is occupied by electrons up to a certain
energy; i.e., the states with both positive and negative
angular momenta are occupied and the net angular mo-
mentum of the dot is zero. We then apply a magnetic field
and the states with positive m become more localized while
the electrons from the states with negative m will escape
from the QD. Finally, the electrons in the QD will have a
net positive angular momentum and correspondingly a net
magnetic moment.

Magnetic field: Numerical results.—To study the depen-
dence of the quasilocalized spectra on the magnetic field

we introduce the wave functions of the Hamiltonian H,,
i.e., without a confinement potential [16], as the basis
functions. To eliminate any escape of the electron from
the QD we consider only the basis functions with positive
energy,

®)

Uy = B9

i¢11,m(x)

where N = n + 1(Im| + m) is the Landau level (LL) in-
dex, Cy—o =1 and Cyo = 1/+/2, sgn(N = 0) = 0, and
¢, is the Landau wave function [1]. Here LI" (%) is the
associated Laguerre polynomial, x = r?/a’?> is a dimen-
sionless distance, and a’ is the characteristic length of the
system. Without the confinement, a’ should be equal to the

magnetic length [ = \/hc/eB. In the presence of the para-
bolic confinement, the Hamiltonian suggests a natural unit
of length (y/u)'/? [8] and a natural unit of energy (y%u)'/3.
This length characterizes the size of a parabolic dot in
graphene. Therefore, 2/a”? = 1/I2 + (u/y)*>.

In our numerical calculations, we choose the band pa-
rameter to be y = 646 meV nm for y, = 3.03 eV [17].
The low-lying energy states of the graphene QD are shown
in Fig. 2. The results shown in Fig. 2 look different from the
results in Fig. 1 because in Fig. 2 we have suppressed any
escape from QD and, hence, only the lowest trapped states
but not the escape from them are considered. In the absence
of a confinement potential, the Dirac spectrum scales as
\/iy\/lv /1 (shown as the inset of Fig. 2). In the Fock-
Darwin spectrum for a conventional electron dot, the en-
ergy levels are degenerate and equally spaced at B = 0 [1].
The two-dimensional parabolic confinement considered
here shows two outstanding features in contrast to the
Fock-Darwin spectra at B = 0. The first is the lifting of
the degeneracy and the other is the unequal separation
among the energy levels. Figure 2 shows the field-
dependent energy spectrum for u = 0.1. The energy dif-
ference between the lowest two levels at B = 0 is about

= u=0 3.
—80
N=1
(0,0) | N=0
I 3 B

0 2 4 B (Tesla)

FIG. 2. Fock-Darwin spectrum of the Dirac quantum dots,
plotted for the confinement potential strength u =
0.1 (meV/nm?). The numbers in the parentheses correspond to
the two quantum numbers n and m. Results for u = 0 are given
in the inset.
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FIG. 3. The dipole-allowed transitions in the Fock-Darwin
spectrum of graphene QDs for u = 0.1. Inset: the case of u =
0. The thickness of the lines is proportional to the calculated
intensity. From the bottom to the top, the relative intensities are
about 1.0, 0.1, 0.02, respectively.

(v2u)'/3. At a low magnetic field, the magnetic length [ is
larger than or comparable to the size of the confinement
(y/u)'/? and there is a hybridization of the LLs with the
levels arising from the spatial confinement. In the high
magnetic field limit / < (y/u)'/3, the Landau-type levels
prevail, as expected. The Fock-Darwin spectra for conven-
tional quantum dots have been determined earlier by the
transport spectroscopy [18]. Similar studies for the gra-
phene QDs would be very important to explore the energy
levels and the nature of confinement for Dirac fermions in a
graphene QD.

Figure 3 shows the dipole-allowed optical absorption
spectra [1,19] for u = 0 and u = 0.1. Without any con-
finement there is only the (0, 0) — (0, 1) transition (shown
as the inset of Fig. 3). The additional transitions, (0, 0) —
(1,1) and (0,0) — (2, 1), are due to the presence of the
parabolic confinement. For the Dirac fermions in a QD, the
lowest dipole-allowed transition is

AE = (y*u)'/? + )]

V2y

T
For B = 0 the corresponding energy is =~ (y?u)'/3. As the
magnetic field increases, AE approaches the cyclotron
energy +/2y/1 = \/2(eyB/hc), where vy can therefore be
uniquely determined experimentally. Conventionally, in
the nearest-neighbor tight-binding model, 7y, is obtained
by fitting the ab initio calculation and the experimental
data [12]. In a GaAs quantum dot, the magnetic-field-
dependent far-infrared absorption experiments have estab-
lished the energy relation AE. = h{) = %hwc to a great
accuracy [19]. Similarly, for the massless chiral fermions
in a graphene QD, we expect that the band parameter y can
also be determined quite accurately by the optical absorp-
tion experiments in the high-field limit.

Although the high magnetic field results are the major
focus of this Letter, as in this case the localization of the

electron in a QD at all values of the m is provided by the
magnetic field, at B = 0 the chiral nature of the states
prevent the electrons from being confined in a QD. This
clearly indicates that the nature of the energy states and the
optical spectra at a very small B are still important open
questions.
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