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We study the transport of atoms across a localized Bose-Einstein condensate in a one-dimensional
optical lattice. For atoms scattering off the condensate, we predict total reflection as well as full
transmission for certain parameter values on the basis of an exactly solvable model. The findings of
analytical and numerical calculations are interpreted by a tunable Fano-like resonance and may lead to
interesting applications for blocking and filtering atom beams.
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An understanding of the transport properties of ultracold
atoms is vital for the development of technological appli-
cations in the fields of matter-wave interferometry [1] or
quantum information processing with neutral atoms [2–5].
Over the last couple of years, it has been shown that optical
lattices, generated by counter-propagating laser beams and
providing a periodic potential modulation for the atoms,
introduce many interesting and potentially useful effects
by modifying single atom properties and enhancing corre-
lations between atoms [6]. Here, we discuss the scattering
of atoms across a localized Bose-Einstein condensate
(BEC) in an optical lattice. We find that dramatic effects
of scattering resonances with either full transparency or
total reflection can occur.

Previously, transparency effects have been conjectured
for the scattering of He atoms on a film of superfluid
helium-4 [7], and similar effects have been predicted for
the scattering of atoms on a BEC in a trap of finite depth
[8]. These effects were first attributed to the coherent
interactions within the target and with the scattering atoms,
but a full understanding of the numerical results was not
achieved. More numerical results were produced later [9]
and a Levinson theorem was proved on general grounds
[10] without revealing the mechanism for transparency
effects.

In this Letter, we present and analyze a very simple and
analytically solvable one-dimensional model of atom scat-
tering by a BEC. The model shows transparency as well as
blockade of atoms by total reflection, which is interpreted
as a Fano resonance. Fano originally studied how interfer-
ence may both enhance and suppress scattering close to a
Feshbach resonance [11,12]. In the problem considered
here, the atom-atom interaction leads to an effective non-
linearity. It was shown recently [13] that nonlinearity gen-
erates several scattering channels, which can lead to reso-
nances with destructive interference and in 1D, particu-
larly, to total reflection similar to the original Fano prob-
lem. Hence, they are termed Fano resonances. Proposed
applications in nonlinear optics and Josephson junction
networks encounter various difficulties due to inhomoge-

neities and dissipation [14]. They are absent in the present
study, thus making the resonant atom-BEC scattering ideal
for harvesting on Fano resonances.

We consider a BEC on a lattice, where interactions be-
tween atoms are present only in a very localized region [see
Fig. 1]. Such a situation could be realized experimentally
by combining optical lattices with atom-chip technology
[15,16] or in optical micro-lens arrays [17] where the
s-wave scattering length of atoms can be tuned by an in-
homogeneous magnetic [18,19] or laser field [20,21]. Spe-
cifically, we consider the discrete nonlinear Schrödinger
(DNLS) equation, a classical variant of the Bose-Hubbard
model appropriate for a BEC in a periodic potential in the
tight binding limit [6]. With interactions being present only
on site number nc, we write in dimensionless form

 i
@�n

@t
� ���n�1 ��n�1� � �j�nc j

2�nc�n;nc ; (1)

where �n�t� is a complex amplitude of the BEC field at site
n and�� � U=J is the interaction strength on site nc. This
simple model reflects generic features of BECs in a one-
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FIG. 1 (color online). Scattering scheme in an optical lattice.
The incoming, reflected, and transmitted beams of atoms are
represented as plane waves. The atoms interact only around n �
nc, where the BEC is centered.
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dimensional optical lattice with inhomogeneous scatter-
ing length. Furthermore, this model could be realized
quantitatively in a deep optical lattice with tight transverse
confinement [22]. For atoms with mass M in a lattice with
spacing d in the tight binding limit, J � 4s3=4e�2

��
s
p

Er=
����
�
p

is the energy scale for tunneling between the lattice
sites, where s � V0=Er is the depth of the optical lattice
V0 measured in units of the recoil energy Er �
2@�2=�d2M�. The on-site interaction energy per atom is
U � 4�as@2

R
d3xj �x�j4=M, where as is the tunable

s-wave scattering length at the nonlinear site nc, and
 �x� is the localized Wannier state associated with the
lowest Bloch band of the lattice. The number of atoms in
the lattice is given by N �

P
nj�nj

2. Small-amplitude
plane-wave solutions of Eq. (1) take the form �n �
�0 exp�ikn� exp��iEkt� and satisfy the relation

 Ek � �2 cosk; (2)

which defines the band of single-particle energies Ek 2
��2; 2	 [see Fig. 2(a)]. The unit of dimensionless energy is
J, and the quasimomentum k is measured in units of d�1.

First, we look for localized and stationary solutions of
Eq. (1), corresponding to the BEC centered in n � nc. For
simplicity, we assume that interactions are attractive and
thus � > 0. As an ansatz, we take an exponentially local-
ized profile: �n�t��bn�t��bncx

jn�ncj exp��iEbt�, where
bnc is the condensate amplitude, jxj< 1, and Eb is the
respective energy or chemical potential. Inserting this ex-
pression into (1), we obtain that

 Eb � �
��������������
4� g2

q
and x � ��Eb � g�=2; (3)

where g � �b2
nc (g > 0). Equation (3) corresponds to so-

lutions for localized BECs with Eb being outside of the
band Ek [Eb <�2, see Fig. 2(a)]. They are similar to
bright lattice solitons pinned to the nonlinear lattice site.

These localized modes exist only above a threshold Nb �
�Eb=� > Nth

b [23], given by Nth
b � 2=�. We assume that

Nb is significantly larger than the threshold, which should
be easily achieved in a possible experiment.

By controlling the number of atoms in the BEC or by
tuning the nonlinear coefficient, we can easily modify the
BEC energy Eb � ��Nb (this is equivalent to modifying
the parameter g). This is one of the keys for a tunable Fano-
blockade scheme. As we will show later, this energy is
directly related to the energy where zero transmission of
the atom beam through the BEC is observed.

We consider three different values for g as examples:
g1 � 0:36, g2 � 0:6, and g3 � 0:9. The corresponding
energies [Eb1 � �2:03 (box), Eb2 � �2:09 (diamond),
and Eb3 � �2:19 (triangle)] and the profiles of the BEC
states are shown in the left part of Fig. 2(b). With a linear
stability analysis, we confirm that all these solutions cen-
tered in n � nc are stable. This is important for two
reasons. First, experimental generation of these states
should be possible. Second, the scattering of small-
amplitude wave packets by these modes can be viewed as
a small perturbation of the latter, which will stay small if
the BEC is stable.

In order to study the scattering of a propagating atom
beam by the localized BEC, we consider

 �n�t� � �n�t� � bn�t�; (4)

where �n is assumed to be ‘‘small.’’ We linearize Eq. (1)
with respect to �n�t�, obtaining for the atom beam

 � i
@�n

@t
� ��n�1 ��n�1� � g�2�nc � e

�2iEbt�
nc��n;nc :

(5)

Because of the confined interaction region, the conditions
of validity jbnc j

2 � 1 for the mean field ansatz (1) and
j�nc j � jbnc j for the linearization (5) are easily satisfied
for large enough BECs. Far away from n � nc, the solution
of Eq. (5) corresponds to a propagating plane wave which
satisfies (2). The localized BEC generates a scattering
potential for the atom beam which has a constant and a
time-dependent part. A similar equation to (5) was found in
Ref. [13] for the scattering of plane waves against a dis-
crete breather (a localized excitation on nonlinear lattices
[24]). In that work, Fano resonances were studied in a full
nonlinear lattice with a strongly localized nonlinear mode.
This, however, implies g� 1, which makes the discrete
breather a very strong scatterer for almost all incoming
plane waves. Our setup allows us to tune g to smaller
values and thus admits Fano resonances on a background
of almost perfect transmission.

We solve the Eq. (5) by using a Bogoliubov transforma-
tion [9] given by

 �n�t� � une
�iEt � v
ne

�i�2Eb�E�t; (6)

and by inserting it in (5), we obtain the discrete Bogoliubov
(DB) equations:
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FIG. 2 (color online). (a) Energy diagram for localized and
extended solutions. In the linear band, Ek is plotted. (b) Zoom of
the region E
�2. Boxes, diamonds, and triangles correspond
to the BEC (Eb <�2) and to the local mode (EL >�2) solu-
tions for g1, g2, and g3, respectively. The corresponding BEC
profiles are shown. The filled circles correspond to the resonance
condition (12).
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 Eun � ��un�1 � un�1� � g�2unc � vnc��n;nc ; (7)

 �2Eb � E�vn � ��vn�1 � vn�1� � g�2vnc � unc��n;nc :

(8)

Here, un corresponds to an open channel which, far away
from nc, represents a propagating atom beam for which the
energy is in the band E � Ek 2 ��2; 2	. Contrary, vn
represents a closed channel whose extended states far
away from the scattering center have 2Eb � E =2 ��2; 2	.
They are thus located outside the open channel continuum
and cannot be excited in the same energy range. However,
even in the absence of any coupling between both chan-
nels, the scattering center also provides a localized state in
the spectrum of the closed channel with energy EL. The
localized state, by definition, is located outside the band of
extended states in the vn channel, but may be located
inside the un-channel band E 2 ��2; 2	. In such a case,
taking the coupling between channels into account, we
encounter a Fano resonance for EL � Ek.

Let us consider the situation when both channels are
decoupled. For this particular situation, the closed channel
equation is given by

 �2Eb � E�vn � ��vn�1 � vn�1� � 2gvnc�n;nc ;

and admits a localized solution vn � vncw
jn�ncj (jwj< 1),

for which

 w � �g�
��������������
1� g2

q
and E � EL � 2�Eb �

��������������
1� g2

q
�:

We call this solution the local mode (LM). EL corresponds
to the LM energy, which is always inside the continuum of
the open channel: if g! 0) EL ! �2 and, if g! 1 )
EL ! 0. Therefore, due to the time dependence of the
original scattering potential, the closed channel is able to
resonate with the open one at a frequency that depends on
externally controllable parameters.

Keeping in mind the localized nature of the LM and the
propagating one of the open channel, we make the follow-
ing ansatz:

 un �
�
a1e

ik�n�nc� � b1e
�ik�n�nc�; n < nc

c1eik�n�nc�; n � nc
; (9)

 vn � �vnc �wjn�ncj: (10)

Here, a1, b1, and c1 represent the incoming, reflected, and
transmitted beam amplitudes, respectively. �vnc corre-
sponds to the closed channel amplitude and j �wj< 1. The
beam quasimomentum k can be generated in the experi-
ment by using a phase imprinting method [25], Bragg
scattering, or simply by acceleration of the matter-wave
probe in an external potential. We solve analytically the
scattering problem by inserting (9) and (10) in (7) and (8)
for n � nc, nc � 1. By doing so, we obtain that the open
channel satisfies (2), a1 � b1 � c1, �w � w, and that the
transmission is given by

 T�k� �
4sin2k

4sin2k�
�
2g� g2����������������������

�Ek�2Eb�2�4
p

�2g

�
2

(11)

(T � jc1=a1j
2). Resonances occur when the denominator

diverges or when
�����������������������������������
�Ek � 2Eb�

2 � 4
p

� 2g � 0. The con-
dition for the resonance is

 Ek � EL ) kL � arccos��EL=2�: (12)

Equation (12) implies that the transmission for atom beams
through the BEC is reduced to zero when an LM is gen-
erated in the process, i.e., when the closed channel reso-
nates with the open one.

In Fig. 2(b), we show the corresponding energies for the
LMs, for the three values of g, EL1 � �1:94 (box), EL2 �
�1:84 (diamond), and EL3 � �1:69 (triangle). The curve
in that figure corresponds to Eq. (2), and the filled circles
correspond to the value of k for which the resonance is
expected (12). In principle, any energy in the interval
f�2; 0g can be a good candidate for the observation of a
Fano resonance in this setup. But, as we will show later, the
response of the system is not always the same, and it
essentially depends on the BEC profile.

The transmission T�k� from Eq. (11) is shown in Fig. 3
for three values of g. As g increases, the width and the
position of the resonance increase. Furthermore, the more
localized the BEC becomes, the stronger it reflects the
atom beam off resonance. As expected from (12), increas-
ing g (which corresponds to decreasing Eb or increasing
Nb) leads to an increase of the resonance energy. By tuning
the nonlinear parameter g, we can thus choose the amount
of the beam which passes through the BEC. Off resonance
(for larger values of k), we can select the percentage of the
incoming beam that is transmitted for a defined quasimo-
mentum. Therefore, the actual setup can be used as a 100%
blockade or as a selective filter.

Now, we look for a numerical confirmation of our
theoretical description. In the simulations of Eq. (1),
we initialize the atom beam with a Gaussian profile:
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FIG. 3 (color online). Transmission T versus momentum k.
Lines: Eq. (11), symbols: real time numerical simulations of
Eq. (1) using wave packets for g1 � 0:36 (line and boxes), g2 �
0:6 (line and diamonds), and g3 � 0:9 (line and triangles).
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� � �0 exp����n� n0�
2	 exp�ik�n� n0�	 with �0 �

0:01 and � � 0:001. n0 is the initial location of the center
of the distribution and well separated from the BEC to
avoid an initial interaction. k is the initial quasimomentum.
The amplitude�0 was chosen to be very small compared to
the BEC amplitude in order to justify Eq. (5). The value of
� implies a spatial width of approximately 60 sites and a
reciprocal width in k-space of 0.12. With this choice, we
can clearly observe the resonant response of the system. In
Fig. 3, the symbols denote our numerical results for g1, g2,
and g3. The agreement between theory and simulations is
almost perfect. We have some disagreement for small
values of k where the group velocity is very small and
the numerical computation of T is unreliable.

Finally, we numerically study a more realistic scenario.
We consider interactions to extend over three sites of the
lattice as it may be realistically achieved by magnetic field
variations on an atom chip: ��n� � � exp��jn� ncj� for
n � nc, nc � 1 and ��n� � 0, otherwise. By using a
Newton-Raphson method, we compute the BEC profiles
for g1, g2, and g3. These solutions are stable with almost
the same energies Eb1, Eb2, and Eb3. In Fig. 4(a), we
present our numerical computations of T versus k. The
results are similar to the ones for a single-site impurity (see
Fig. 3). Figures 4(b)– 4(d) show some numerical examples
with a transmission of 96%, 1%, and 49%, respectively.
These results show the robustness of our theoretical pre-
diction in a more realistic experimental setup. We note that
Fig. 4(d) realizes a fully coherent beam splitter for the
incoming atom beam, which we have checked numerically.

In conclusion, we have investigated Fano resonances in
the context of Bose-Einstein condensates in an optical
lattice. The implementation of this idea can be viewed as

a powerful tool for controlling the transmission of matter
waves in interferometry and quantum information pro-
cesses. Fano resonances rely on destructive interference
and are thus inherent to wave dynamics. An observation of
these resonances in atom-BEC scattering would provide, in
addition to tunable filters, a new demonstration of the
quantum matter-wave character of ultracold atoms.
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FIG. 4 (color online). Real time numerical simulations of
Eq. (1) for a three-site nonlinear impurity. (a) T versus k for
g1 � 0:36 (boxes), g2 � 0:6 (diamonds), and g3 � 0:9 (tri-
angles). Evolution of j�n�t�j

2: (b) g1, k � 1:4, (c) g2, k �
0:34, (d) g3, k � 0:95. Lines are guides to the eye, only.
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