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High Harmonic Generation and the Role of Atomic Orbital Wave Functions

J. Levesque,l’2 D. Zeidler,l’3 J.P. Malrangos,4 P.B. Corkum,1 and D. M. Villeneuve'*

'National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario KIA OR6, Canada
2INRS—Energie et Matériaux, 1650 boul. Lionel-Boulet, C.P. 1020, Varennes (Québec) J3X 1S2 Canada
3Carl Zeiss SMT AG, Rudolf-Eber-Str. 2, 73447 Oberkochen, Germany
“The Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BW, United Kingdom
(Received 17 July 2006; published 3 May 2007)

High harmonic spectra were recorded from different rare-gas atoms under identical experimental
conditions. It is shown that although each atom’s spectrum is different, the differences are due almost
entirely to the orbital influence in the recombination step. The amplitude of the continuum electron wave
packet versus kinetic energy is derived from these data and is shown to be largely independent of the atom,
in agreement with models of tunnel ionization. We compare the measurements with calculations in both
the length gauge and the velocity gauge and show that the two gauges imply a different de Broglie

wavelength.
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High harmonic generation (HHG) is a process involv-
ing intense femtosecond laser light and gas-phase atoms
or molecules [1-3]. It produces a coherent [4], colli-
mated beam of extreme ultraviolet (xuv) radiation that is
composed of a train of attosecond pulses. Single attosec-
ond pulses can be isolated and used to probe attosecond
time scale motion in atoms, e.g., Auger decay [5]. The
radiation has been extended beyond 1 keV in photon
energy [6].

High harmonic generation is commonly described using
a simple semiclassical explanation involving three steps
[7]: (1) tunnel ionization of the highest energy electron,
(2) acceleration of the free electron in the laser field, and
driving the electron back to the parent ion, and (3) recom-
bination of the electron to the state from which it origi-
nated. The recombination step leads to emission of an xuv
photon whose energy is given by the sum of the electron’s
kinetic energy plus the ionization potential of the state. The
strong field approximation (SFA) [8] is widely used to
model this process semiclassically.

We will show that, for the atoms tested, the first two
steps are largely independent of the details of the atom up
to an overall scaling constant, and that only the recombi-
nation step is sensitive to the particular atom. We will
characterize the spectral amplitude of the electronic wave
packet that represents the recolliding electron. By combin-
ing this amplitude information with phase information
[9,10], one can fully reconstruct the recollision electron
wave packet.

In addition to characterizing the electron wave packet,
this Letter also verifies the model that underlies molecular
orbital tomography [11], a method that can measure the
three-dimensional shape of a single molecular orbital wave
function. A reference atom is used to calibrate the recol-
lision electron wave packet amplitude because an atom has
no angular dependence, unlike molecules. We will show
that the difference in the HHG spectrum from three differ-
ent atoms is entirely determined by the shape of the highest
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occupied orbital, assuming that HHG phase mismatch is
negligible.

The experiment has been described previously [11,12].
Briefly, a 30 fs, 800 nm laser pulse from a 50 Hz Ti:Sa laser
system was focused into a pulsed gas jet in a vacuum
chamber using a 50 cm focal length lens. The thin gas jet
was placed in the diverging part of the focus so that short
trajectories were phase matched [13]. The resulting xuv
radiation was imaged by an xuv spectrometer, and the
spectra were recorded on a computer.

In many experiments, efforts are made to maximize the
HHG process. On the other hand, in our experiment, every
effort was made to ensure that the xuv spectra were a
measure of the single-atom response and that propagation
effects on the spectra were minimized. Rather than using a
gas cell or capillary for the sample gas, a supersonic pulsed
valve introduced the gas into the vacuum chamber. The
laser beam was focused as close to the 100 uwm nozzle as
possible, about 1 mm below. With a backing pressure of
3 bars, the gas pressure at this position was estimated to be
14 mbar, and its length was about 1 mm with a Gaussian
density profile.

Phase mismatch between the 800 nm driving field and
the generated xuv field can lead to an undesired modifica-
tion of the spectrum. For a gas jet, phase mismatch is
mostly due to the differing phase velocities at the two
wavelengths, due to the index of refraction of the gas and
due to free electrons produced by the intense laser [14,15].
To estimate an upper limit for phase mismatch, we assume
a fully ionized gas sample with electron density n, = 4 X
107 cm™3. The phase mismatch due to the index of re-
fraction of the gas is negligible compared to the plasma
dispersion. The coherence length [15] L., = 7/Ak =
52 mm, which is much longer than the 1 mm length of
the gas jet, so phase mismatch should be minimal in the
experiment.

Reabsorption of the xuv radiation could also modify the
xuv spectra. Using the total photoionization cross sections
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[16], the absorption length [15] Ly, = 1/(op) is greater
than 1 mm for He and Ne, and only less than 1 mm for Ar
below harmonic 20. We conclude that reabsorption can
possibly modify the lowest harmonics of the Ar spectrum.
Finally, because we focus well before the gas jet, there is no
Gouy phase shift in the medium. These estimates were
verified using a two-dimensional HHG propagation code
[17] for the case of Ne.

Three different rare gas atoms were chosen to cover a
range of ionization potentials and orbital shapes: argon
(15.8 eV, 3p), neon (21.6 eV, 2p), and helium (24.6 eV,
1s). While we have only tried three atoms, the different
sizes and symmetries of the orbitals enable us to test our
hypothesis.

HHG spectra were recorded for each gas sample for a
range of laser energies. In Fig. 1, we show the harmonic
spectra observed from the three sample atoms. All spectra
were recorded under identical laser parameters, with an
intensity of 6 X 10'* W/cm?. Clearly each spectrum has a
unique shape. We will show that the shape is determined
almost entirely by the shape of the HOMO.

The high harmonic signal can be shown to be related to
the transition dipole matrix element between the ground
state wave function and a continuum plane wave, as fol-
lows [11]. The harmonic emission, in the single-atom
model, is proportional to the square of the Fourier trans-
form of the dipole acceleration [18], d(r),

] e d(1)dt ‘ 2. (1)

Q) = | f it | = 0

The induced dipole is a measure of the charge displace-
ment within the atom due to the electronic response to the
applied field,

d (1) = (Y(x, )lrly(r, 1)). 2

If we separate the electronic wave function (r, 7) into
two parts, the bound state ¢, and the continuum part .,
then the time-varying part of the dipole is [19]

d (1) = (Yo(r, 0)[r|ep.(r, 1)) + c.c. (3)
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FIG. 1 (color online). High harmonic signals recorded for
three atoms under identical experimental conditions. Also shown
are the calculated orbital shapes for He (1s), Ne (2p), and Ar
(Bp).

We expand ¢, as a sum of plane waves, which forms a
complete basis set,

Y (r, 1) = [a(w)eik(“‘)'r_i“‘tdw. 4)

Here, a(w) are the complex amplitudes of the plane wave
components. Note that atomic units are used here, 1 = e =
m, = 1; in atomic units, velocity, momentum, and wave
number are the same, v = p = k. The function k(w) and
its inverse w(k) relate the plane wave momentum k to its
kinetic energy w as w(k) = k*/2.

Now the radiated signal in Eq. (1) can be written as

S(Q) = 47 a(w )Xol rle™ ). )

Here, () is the emitted xuv frequency, and w is the kinetic
energy of the electron. These are related through ) = w +
I, that comes from the delta function in the integral, and
also comes from stationary phase points in SFA theory [8].
Later, we will discuss how to relate ) and k.

Orbital wave functions were calculated using a standard
Hartree-Fock ab initio program GAMESS [20], and the
matrix elements from the highest orbitals to continuum
plane waves of momentum k were calculated, (if|x|k).
For p orbitals, the orbital aligned with the laser field (m =
0) was chosen, since this will have the highest ionization
rate [21]. The orbitals are shown in Fig. 1.

The calculated dipole matrix elements in the length
gauge are shown in Fig. 2 for the three atoms. We show
two slightly different calculations, depending on the choice
of the function w(k), as described in the caption.

The spectral amplitude |a(w)]| of the recollision electron
wave packet can be determined from the experimental data
in Fig. 1 by dividing by the matrix elements for each atom.
The result is shown in Fig. 3. The wavelength dependence
of the xuv grating [22] and of the MCP detector [23] has
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FIG. 2 (color online). Length gauge transition dipole matrix
elements (| x|k) between each atom’s HOMO, ¢, and a plane
wave of momentum k, plotted against emitted xuv frequency )
in multiples of the driving laser frequency. In (a), the field-free
electron dispersion relation is used, ) = k>/2. In (b), the ion-
ization potential, I, has been subtracted from the emitted xuv
frequency, (), to determine the corresponding plane wave mo-
mentum, k: QO = k*/2 + 1.
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been removed from the measurements. The curves have
been shifted vertically to compensate for differing overall
efficiency and gas density.

The horizontal axis corresponds to the electron kinetic
energy o just before the electron encounters the ion’s
Coulomb potential. The lowest (‘“‘threshold”’) harmonics
correspond to electrons returning with nearly zero kinetic
energy where Coulomb effects become significant; we
expect that the SFA model [8] breaks down here. It is
evident that the results in Fig. 3 are largely independent
of the atom, to within a vertical scaling factor due to
differing overall ionization rates and gas densities. We
hypothesize that the continuum wave packet is indepen-
dent of the details of the atomic orbital from which it
ionizes.

Why do we expect the plane wave amplitude a(w) to be
largely independent of the atomic orbital? The current
theories of tunnel ionization (ADK [24], Yudin and
Ivanov [25], molecular ADK [26]) are based on the instan-
taneous quasistatic tunneling rate written in the form

2(211))3/2 2n—|m|-1
)

2(21,)%?
3E| COSa)t|>

Iﬂqs(l‘) = AnlBllmIIpC(e)(

X exp(— (6)

where E is the peak electric field, n, [, m are the quantum
numbers of the orbital, and ¢ is time within the optical
cycle. This expression contains an exponential part that
depends on the phase within the optical cycle, and a
preexponential part that contains details of the atomic or
molecular orbital but not the phase. Since the quantum
numbers do not appear in the exponential part that deter-
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FIG. 3 (color online). The recorded HHG spectra were divided
by the transition dipole in the length gauge for each atomic
orbital to yield the amplitude of the continuum electron wave
packet as it returns to the atom. We plot Q?a(w)| =
JS(Q)/| Dy, (k)| and utilize the dispersion relation ) = k2/2.
Because the laser intensity was well above the saturation inten-
sity for argon, argon’s higher harmonics fall off rapidly. The
experimental data have been corrected for detector response and
have been vertically scaled because of differing gas densities and
ionization probabilities. The horizontal axis is the electron
kinetic energy w just before it interacts with the atomic potential,
ie, w =0 — I,.

mines the cycle dependence of the ionization rate, we
expect that the time dependence of the continuum wave
packet does not depend on the orbital details. This is
supported by the results shown in Fig. 3. The inferred
continuum wave packet amplitudes are the same for all
three atoms, to within the vertical scaling factor that comes
from the atom-dependent preexponential factor. It is also
supported by recent direct measurements of the electron
velocity distribution for different alignments of the N,
molecule [27].

The calculation of transition dipole matrix elements
depends on the gauge chosen [28]. The most common
are length gauge (D)., = (¥|rlk)), velocity gauge (D, =
(i/Q){|v|k)), and acceleration gauge (D,.. = (1/Q?) X
(y|VV|k), where V is the atomic potential). All three
gauges should in principle yield the same result, but will
differ if the wave functions are not eigenstates of the
complete Hamiltonian of the system [28]. The acceleration
gauge is commonly used in numerical calculations [18]
where the model potential V is known, but in the present
case, we have no a priori knowledge of the form of the
potential which includes nonlocal effects due to the other
electrons in the atoms. The use of a plane wave expansion
could possibly result in a gauge dependence because the
plane wave expansion employed by the strong field ap-
proximation (SFA) [8] ignores the Coulomb potential.
Only recently have approximate solutions for the
Coulomb-Volkov problem become available [29].

The treatment of the experimental spectra that was
shown in Fig. 3 is repeated in Fig. 4 using both length
and velocity gauges. Both gauges give good agreement up
to a vertical scaling factor. This demonstrates that calcu-
lations done in both the length and velocity gauges agree,
but require that the dispersion relation for the electron be
slightly different. When the gauges and dispersion rela-
tions were reversed to that shown in Fig. 4, there was
significant deviation from straight lines. We also tried
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FIG. 4 (color online). Experimental high harmonic spectra
from Fig. 1 divided by the transition dipole matrix elements
calculated using both the length (solid lines) and the velocity
gauge (dashed lines). In the lower group, we plot Q2|a(w)| =
JS(Q)/|Dy (k)| and utilize the dispersion relation ) = k2/2 +
I,. The length gauge curves are repeated from Fig. 3 to show that
both gauges give similar results. The two gauges have been
vertically displaced so that they can be compared.
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using the acceleration gauge suggested by Gordon et al.
[30], D, = (1/Q2){|x/r|k), but found that the agree-
ment between atoms was poor for any choice of dispersion
relation.

An uncertainty in the choice of the dispersion relation
has been previously reported in the literature. Experiments
with N, [11] use Q = k?/2, whereas experiments with
CO, indicate that Q = k*>/2 + I p 1s better [31]. Simula-
tions for Hy /H, by Lein et al. [32] were found to be in
qualitative agreement with a semiclassical model with
Q = k?/2, although the simulations gave results inter-
mediate between () = k*/2 and Q = k*/2 + I,

We have shown that we can use HHG to characterize the
spectral amplitude |a(w)| of the electron wave packet
produced by tunnel ionization of atoms. The amplitude is
largely independent of the shape of the atomic orbital that
is ionized, as well as its ionization potential, for the three
atoms tested, to the extent that HHG phase mismatch
effects are not present. Both the length gauge and the
velocity gauge give similar results, provided that we
choose the correct dispersion relation. We hypothesize
that this is a general behavior, but this must be further
tested with other atoms and molecules. Our results suggest
that it is easy to find a reference atom with which to
calibrate |a(w)| for molecular orbital tomography experi-
ments [11]. It also confirms the functional form of the
expression for the instantaneous tunnel ionization rate
and sheds new light on the dispersion relation for the
recombination electron and the gauge invariance of the
transition dipoles. Further theoretical investigation of the
relationship between gauge and dispersion relation is
warranted.

We would like to thank Vladimir Yakovlev for perform-
ing the HHG propagation calculations for us.
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